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Abstract

We consider the framework of privacy amplification via iteration, originally
proposed by Feldman et al. and then simplified by Asoodeh et al. in their
analysis via contraction coefficient. This line of work studies the privacy
guarantees obtained by the projected noisy stochastic gradient descent
(PNSGD) algorithm with hidden intermediate updates. A limitation in
the existing literature is that only the randomly-stopped PNSGD has been
studied, while no result has been proved on the more widely-used PNSGD
applied on a shuffled dataset. Moreover, no scheme has been yet proposed
regarding how to decrease the injected noise when new data are received
in an online fashion. Here, we first prove a privacy guarantee for shuffled
PNSGD, which is investigated asymptotically when the noise is fixed for
each individual but reduced as the sample size n grows. We then provide
a faster decaying scheme for the magnitude of the injected noise that also
guarantees the convergence of privacy loss when new data are received in
an online fashion.

1 Introduction

Differential privacy (DP) Dwork et al. (2006b), Dwork et al. (2006a) is a strong standard
to guarantee the privacy for algorithms that have been widely applied to modern machine
learning (Abadi et al., 2016). When multiple operations on the data are involved and each
intermediate step is revealed, composition theorems can be used to keep track of the privacy
loss (Kairouz et al., 2015). However, because such results are required to be general, their
associated privacy bounds are inevitably loose. In contrast, privacy amplification provides
a privacy budget for a composition of mechanisms that is less that the budget of each
individual operation, which strengthens the bound the more operations are concatenated.
Classic examples of this feature are privacy amplification by subsampling (Chaudhuri and
Mishra, 2006; Balle et al., 2018), by shuffling (Erlingsson et al., 2019) and by iteration
(Feldman et al., 2018; Asoodeh et al., 2020). In this paper, we focus on the setting of privacy
amplification by iteration, and extend the analysis via contraction coefficient proposed by
Asoodeh et al. (2020) to prove results that apply to an algorithm commonly used in practice,
in which the entire dataset is shuffled before training a model with PNSGD.
We refer to Asoodeh et al. (2020) for a careful description of their setting, and only briefly
introduce the quantities that are relevant for our analysis. We consider a convex function
f : R+ → R that satisfies f(1) = 0. Ali and Silvey (1966) and Csiszár and Shields (2004)
define the f -divergence between two probability distribution µ and ν is as

Df (µ‖ν) = Eν
[
f

(
dµ
dν

)]
=
∫
f

(
dµ
dν

)
dν
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For a Markov kernel K :W → P(W), where P(W) is the space of probability measures over
W, we let ηf (K) be the contraction coefficient of K under the f -divergence, defined as

ηf (K) = sup
µ,ν:Df (µ‖ν)6=0

Df (µK‖νK)
Df (µ‖ν)

Let now {Kn} be a sequence of Markov kernels, and the two sequences of measures {µn}
and {νn} be generated starting from µ0 and ν0 by applying µn = µn−1Kn and νn = νn−1Kn.
The strong data processing inequality (Raginsky, 2016) for the f -divergence tells us that

Df (µn‖νn) ≤ Df (µ0‖ν0)
n∏
t=1

ηf (Kt) (1)

Among the f -divergences, we focus on the Eγ-divergence, which is the f -divergence associated
with f(t) = (t− γ)+ = max(0, t− γ). We do so because of its connection with the concept of
(ε, δ) differential privacy, which is now the state-of-the-art technique to analyze the privacy
loss that we incur when releasing information from a dataset. It is in fact easy to prove
that a mechanism M is (ε, δ)-DP if and only if the distributions that it generates on two
neighboring datasets D and D′ (write D ∼ D′) are close with respect to the Eγ-divergence.
In particular, for D ∼ D′ and PD being the output distribution of mechanismM on D, then
M is (ε, δ)-DP if and only if

Eeε(PD‖PD′) ≤ δ. (2)

The PNSGD is defined with respect to a loss function ` :W ×X → R that takes as inputs
a parameter in the space K ⊆ W and an observation x ∈ X . Common assumptions made
on the loss functions are the following: for each x ∈ X , `(·, x) is L-Lipschitz and ρ-strongly
convex, and ∇w`(·, x) is β-Lipschitz. The PNSGD algorithm works by combining three
steps: (i) a stochastic gradient descent (SGD) step with learning rate η (ii) an injection of
i.i.d. noise sampled from a known distribution to guarantee privacy and (iii) a projection
ΠK : W → K onto the subspace K. Combined, these steps give the following update rule:
wt+1 = ΠK (wt − η(∇w`(wt, xt+1) + Zt+1)). Such update can be defined as a Markov kernel
by assuming that w0 ∼ µ0 and wt ∼ µt = µ0Kx1 ...Kxt , where Kx is the kernel associated to
a single PNSGD step when observing the data point x.
Asoodeh et al. (2020) investigate the privacy guarantees obtained bounding the left hand
side of (2) making use of (1) in the setting of PNSGD with Laplace or Gaussian noise. The
privacy bound depends on the index at which the neighboring datasets D and D′ differ and
the distribution of the noise injected in the PNSGD. We report their result.
Theorem 1 (Theorem 3 and 4 in Asoodeh et al. (2020)). Define

Q(t) = 1√
2π

∫ ∞
t

e−
u2
2 du = 1− Φ(t) and θγ(r) = Q

(
log(γ)
r
− r

2

)
− γQ

(
log(γ)
r

+ r

2

)
where Φ is the cumulative density function of the standard normal. Let M = (1− 2ηβρ/(β +
ρ))1/2. The PNSGD algorithm is (ε, δ)-DP for its i-th entry where ε ≥ 0 and δ = A ·Bn−i,
where

A = θeε

(
2L
σ

)
, B = θeε

(
MDK

ησ

)
(3)

if we consider K ⊂ Rd compact and convex and Gaussian noise N(0, σ2), while

A =
(

1− e ε2−Lv
)

+
, B =

(
1− e

ε
2−

M(b−a)
2ηv

)
+

(4)

if instead we consider K = [a, b] for a < b and Laplace noise L(0, v).

To get a bound that does not depend on the index of the entry on which the two datasets
differ, the authors later consider the randomly-stopped PNSGD, which simply consist of
picking a random stopping time for the PNSGD uniformly from {1, ..., n}. The bound that
they obtain for δ in the Gaussian case is δ = A/[n(1 − B)]. Based on their proof, it is
clear that the actual bound contains a term (1− Bn−i+1) at the numerator and that the
same result can be obtained if we consider the Laplace noise. In Section 3 we prove that

2



Published as a conference paper at ICLR 2021

a better bound than the one obtained via randomly-stopped PNSGD can be obtained by
first shuffling the dataset and then applying the simple PNSGD. In Section 4 we study the
asymptotic behavior of such bound and find the appropriate decay rate for the variability of
the noise level that guarantees convergence for δ to a non-zero constant. All the proofs of
our results can be found in the Appendix.

2 Related Work

In the DP regime, (ε, δ)-DP is arguably the most popular definition, which is oftentimes
achieved by an algorithm which contains Gaussian or Laplacian noises. For example, in
NoisySGD and NoisyAdam in Abadi et al. (2016); Bu et al. (2020), and PNSGD in this
paper, a certain level of random noise is injected into the gradient to achieve DP. Notably,
as we use more datapoints (or more iterations during the optimization) during the training
procedure, the privacy loss accumulates at a rate that depends on the magnitude of the noise.
It is remarkably important to charaterize, as tightly as possible, the privacy loss at each
iteration. An increasing line of works have proposed to address this difficulty (Dong et al.,
2019; Bun and Steinke, 2016; Dwork and Rothblum, 2016; Balle et al., 2018; Mironov, 2017;
Wang et al., 2019; Koskela et al., 2020; Asoodeh et al., 2020; Abadi et al., 2016), which bring
up many useful notions of DP, such as Rényi DP, Gaussian DP, f -DP and so on. Our paper
extends Asoodeh et al. (2020) by shuffling the dataset first rather than randomly stopping
the PNSGD (see Theorem 5 in Asoodeh et al. (2020)), in order to address the non-uniformity
of privacy guarantee. As a consequence, we obtain a strictly better privacy bound and better
loss than Asoodeh et al. (2020), Abadi et al. (2016), and an additional online result of the
privacy guarantee.

3 Shuffled PNSGD with Fixed Noise

We now prove the bound on δ that we can obtain by first shuffling the dataset and then
applying the PNSGD algorithm. The simple underlying idea here is that, when shuffling the
dataset, the index at which the two neighboring datasets differ has equal probability to end
up in each position. This is a key difference compared to the randomly-stopped PNSGD,
and allows us to get a better bound that do not depend on the initial position of that index.
Theorem 2. Let D ∼ D′ be of size n. Then the shuffled PNSGD is (ε, δ)-DP with

δ = A · (1−Bn)
n(1−B) (5)

and the constants A and B are defined in (3) for Gaussian noise and (4) for Laplace noise.

The idea behind the proof of this theorem is the following: once we shuffled the datasets,
the element xi at which they differ has 1/n probability of ending up in each position. When
it ends up in position with index j, the privacy bound that we obtain for δ is A ·Bn−j . The
overall bound is then A ·

∑n
j=1 B

n−j/n, giving the result in (5).

This bound is indeed better than the one found in Asoodeh et al. (2020) for the randomly
stopped PNSGD since it contains an extra term (1−Bn) at the numerator which does not
depend on i and is smaller than 1. When the injected noise is reduced at the appropriate
rate we will see that that B ≈ 1 − O(1/n), so the extra term ends up having an impact
in the final bound. It is also important to notice that shuffled PNSGD achieves in general
better performance than randomly stopped PNSGD and it is much more commonly used in
practice. In the next section we look at the asymptotic behavior of (5) when n grows and
the variance of the injected noise is properly reduced to guarantee convergence.
Remark 3. Notice that the result in Theorem 2 provides a one epoch privacy bound for
shuffled PNSGD. In real experiments, e.g. when training deep neural networks, usually
multiple passes over the data are necessary to learn the model. In such scenarios, the updates
are not kept secret for the whole duration of the training, but are instead released at the end
of each epoch. The one epoch result can easily be combined with state-of-the-art composition
tools, such as the Moments Accountant (Abadi et al., 2016), f -DP and Gaussian DP (Dong
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Figure 1: (left) Convergence of δ to δ∗L (center) The convergence rate of 1/n (right) Conver-
gence of δ to δ∗,oL . The parameters are described in Appendix G.

et al., 2019). The way to do that is to migrate from (ε, δ)-DP to other regimes, Gaussian
DP or Rényi DP, at the first epoch, then compose in those specific regimes until the end of
training procedure and at last map from the other regimes back to (ε, δ)-DP.

4 Asymptotic Analysis of Shuffled PNSGD

In this section we analyze the PNSGD algorithm applied to a shuffled dataset where for each
update the noise level is fixed. In order to get a convergence result for δ as the size n of the
dataset grows, the level of noise that we use should be targeted to n.
In Theorem 4 we consider Laplace noise L(0, v(n)), while in Theorem 5 we use Gaussian
noise N(0, σ2(n)). The decay of v(n) and σ(n) is regulated by two parameters, C1 and C2.
While C1 is set to be large, so that δ converges to a small value, the use of C2 is simply to
allow the noise level not to be too large for small n, but does not appear in the asymptotic
bound.
Theorem 4. Consider the shuffled PNSGD with fixed Laplace noise L(0, v(n)). Let

v(n) = M(b− a)
2η log (n/C1 + C2) and δ∗L = 1− e−C1 exp(ε/2)

C1e
ε
2

. (6)

Then, for n sufficiently large the procedure is (ε, δ)-DP with δ = δ∗L +O(1/n).

The convergence result in Theorem 4 is confirmed by left and center panels of Figure 1,
where we see that δ converges to δ∗L at the correct convergence rate 1/n.
Theorem 5. Consider the shuffled PNSGD algorithm with fixed Gaussian noise N(0, σ2(n)).
Let

σ(n) = MDK

2η
√
W
(

n2

2C2
1π

+ C2

) and δ∗G = 1− e−2C1e
ε
2

2C1e
ε
2

(7)

where W is the Lambert W function. Then, for n sufficiently large, the procedure is (ε, δ)-DP
with δ = δ∗G +O

(
1

log(n)

)
.

This result is similar to the Laplace case with the main differences being the slightly more
complicated form for the decay of σ(n) and the fact that the convergence happens more
slowly, at a rate of 1/ log(n). In the left and center panels of Figure 2 we get an empirical
confirmation of this result, and in Figure 3 in the Appendix we show different convergence
patterns, from above and below δ∗G.

5 Online PNSGD with Decaying Noise

We go back to the original framework of Asoodeh et al. (2020) and consider the PNSGD
algorithm applied to the non-shuffled dataset and a different level of noise for each update.
The definition of Ai and Bi is the same as in (3) and (4) but the noise level v and σ is
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Figure 2: (left) Convergence of δ to δ∗G (center) The convergence rate is 1/ log(n) (right)
Convergence of δ to δ∗,oG . The parameters are described in Appendix G.

now dependent on the position of each element in the dataset. When D ∼ D′ differ on
index i, we get δ = Ai ·

∏n
t=i+1 Bt. In this scenario we can add new data to D in an online

fashion, without having to restart the procedure to recalibrate the noise level used for the
first entries. It is interesting to notice that for both the Laplace and Gaussian noise the only
difference needed with the decay rate for v(n) and σ(n) defined before is an exponent α > 1.
In Theorem 6 we consider for the entry with index j an injected Laplace noise L(0, vj), while
in Theorem 7 we use Gaussian noise N(0, σ2

j ).
Theorem 6. Consider the PNSGD where for update j we use Laplace noise L(0, vj). Let

vj = M(b− a)
2η log (jα/C1 + C2) and δ∗,oL =

(
1− e

ε
2−

2Lη log(iα/C1+C2)
M(b−a)

)
+
e

∫∞
i+1

log
(

1− C1e
ε
2

xα+C1C2

)
dx

for α > 1. Then as n→∞ the procedure is (ε, δ∗,oL )-DP.
Theorem 7. Consider the PNSGD where for update j we use Gaussian noise N(0, σ2

j ). Let

σj = MDK

2η
√
W
(

j2α

2πC2
1

+ C2

) and δ∗,oG = θeε
(2L
σi

)
e

∫∞
i+1

log

(
θeε

(
2

√
W

(
x2α

2πC2
1

+C2

)))
dx

for α > 1. Then as n→∞ the procedure is (ε, δ∗,oG )-DP.

These two convergence results are confirmed respectively in the right panel of Figure 1 and
in the right panel of Figure 2. Notice that δ∗,oL and δ∗,oG are upper bounds for the actual
limit of δ, since they are obtained bounding from above a sum with an integral. However,
we discuss in Appendix E why the convergence appears to be impeccable. Notice that for
the last elements in the dataset the injected noise in the online setting is smaller than the
fixed noise in the shuffled setting. This makes sense, since in the online setting the noise
level for the first entries of the dataset is not adjusted to n, and is instead kept large.

6 Conclusion

In this work, we have studied the setting of privacy amplification by iteration in the
formulation proposed by Asoodeh et al. (2020), and proved that their analysis of PNSGD
also applies to the case where the data are shuffled first. This is a much more common practice
than the randomly-stopped PNSGD, originally proposed, because of a clear advantage in
terms of accuracy of the algorithm. We proved two asymptotic results on the decay rate
of noises that we can use, either the Laplace or the Gaussian injected noise, in order to
have asymptotic convergence to a non-trivial privacy bound when the size of the dataset
grows. Finally we also showed two results, again for Laplace or Gaussian noise, that can be
obtained in an online setting when the noise does not have to be recalibrated for the whole
dataset but just decayed for the new data. In addition, our single-epoch analysis can be
easily combined with standard composition tools to derive multi-epoch privacy guarantees.
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Mironov, I. (2017). Rényi differential privacy. In 2017 IEEE 30th Computer Security
Foundations Symposium (CSF), pages 263–275. IEEE.

Raginsky, M. (2016). Strong data processing inequalities and φ-sobolev inequalities for
discrete channels. IEEE Transactions on Information Theory, 62(6):3355–3389.

Wang, Y.-X., Balle, B., and Kasiviswanathan, S. P. (2019). Subsampled rényi differential
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A Proof of Theorem 2

Let’s start by considering the simple case n = 2, so that D = {x1, x2} and D′ = {x′1, x′2}
and let i ∈ {1, 2} be the index at which they differ. Let µ be the output distribution of the
shuffled PNSGD on D, and ν be the corresponding distribution from D′. If we define S(D)
and S(D′) to be the two dataset after performing the same shuffling, then we can only have
either S(D) = {x1, x2} or S(D) = {x2, x1}, both with equal probability 1/2. The outcomes
of the shuffled PNSGD on D and D′ are then

µ = 1
2µ0Kx1Kx2 + 1

2µ0Kx2Kx1

ν = 1
2µ0Kx′1

Kx′2
+ 1

2µ0Kx′2
Kx′1

By convexity and Jensen’s inequality we have that

Eγ(µ‖v) ≤ 1
2Eγ

(
µ0Kx1Kx2‖µ0Kx′1

Kx′2

)
+ 1

2Eγ
(
µ0Kx2Kx1‖µ0Kx′2

Kx′1

)
and now we have two options, based on where the two original datasets differ. If i = 1, in
the first term the privacy is stronger than in the second one (because x1 is seen earlier), and
we have

Eγ(µ‖ν) ≤ 1
2A ·B + 1

2A = 1
2A(B + 1)

If i = 2, now the privacy is stronger in the second term, and

Eγ(µ‖ν) ≤ 1
2A+ 1

2A ·B = 1
2A(B + 1)

Since in both cases the bound is the same, this means that for any i ∈ {1, 2} the privacy
guarantee of the shuffled PNSGD algorithm is equal to A(B + 1)/2. From here we see that,
when n > 2, the situation is similar. Instead of just two, we have n! possible permutations
for the elements of D, each one happening with the same probability 1/n!. For each fixed
index i on which the two neighboring datasets differ, we have (n− 1)! permutations in which
element xi appears in each of the n positions. When, after the permutation, element xi ends
up in last position, the bound on Eγ(µ‖ν) is the weakest and just equals A. When in ends
up in first position, the bound is the strongest and is equal to A ·Bn−1. We then have that,
irrespectively of the index i,

Eγ(µ‖v) ≤ 1
n! (n− 1)!A

n−1∑
j=0

Bj = A · (1−Bn)
n(1−B)

B Proof of Theorem 4

We use the result in Theorem 2 combined with (4), and get that

δ =

(
1− e

ε
2−

L
v(n)

)
+
·
[
1−

(
1− e

ε
2−

M(b−a)
2ηv(n)

)n
+

]
n · e

ε
2−

M(b−a)
2ηv(n)

Once we plug in the v(n) defined in (6) we have that, when n is sufficiently large,

δ =

(
1− e

ε
2−

2Lη log( n
C1

+C2)

M(b−a)

)
+

[
1−

(
1− C1e

ε
2

n+C1C2

)n
+

]
n · e

ε
2−log( n

C1
+C2)

=

[
1−

(
1− C1e

ε
2

n+C1C2

)n]
n · C1e

ε
2

n+C1C2

·
(

1 +O

(
1
n

))

= 1− e−C1 exp(ε/2)

C1e
ε
2

+O

(
1
n

)
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C An important Lemma for the Gaussian case

Lemma 8. For a sufficiently small σ and two constants c and ε, we have

θeε
( c
σ

)
= 1− 1√

2π
e
ε
2 e−

c2
8σ2

(
4σ
c

+O(σ3)
)
.

Recall from the definition of the function θγ(r) that

θeε
( c
σ

)
= Q

(εσ
c
− c

2σ

)
− eεQ

(εσ
c

+ c

2σ

)
(8)

We apply the following approximation of the normal cumulative density function, valid for
large positive x,

Q(x) := 1√
2π

∫ ∞
x

e−
u2
2 du = 1√

2π
e−

x2
2

(
1
x
− 1
x3 + 3

x5 + · · ·
)

= 1√
2π
e−

x2
2

(
1
x

+O

(
1
x3

))
(9)

and similarly, for large negative values of x

Q(x) := 1√
2π

∫ ∞
x

e−
u2
2 du = 1 + 1√

2π
e−

x2
2

(
1
x

+O

(
1
x3

))
.

Therefore (8) can be reformulated as

θeε
( c
σ

)
= 1 + 1√

2π
e
− 1

2

(
ε2σ2
c2 + c2

4σ2

)
+ ε

2

(
1

εσ
c −

c
2σ

+O

(
1

εσ
c −

c
2σ

)3
)

− 1√
2π
eεe
− 1

2

(
ε2σ2
c2 + c2

4σ2

)
− ε2

(
1

εσ
c + c

2σ
+O

(
1

εσ
c + c

2σ

)3
)

= 1− 1√
2π
e
ε
2 e
− 1

2

(
ε2σ2
c2 + c2

4σ2

) (4σ
c

+O(σ3)
)

= 1− 1√
2π
e
ε
2 e−

c2
8σ2

(
4σ
c

+O(σ3)
)

D Proof of Theorem 5

From Theorem 2 we know that

δ =
θeε
(

2L
σ(n)

)
·
[
1− θeε

(
MDK
ησ(n)

)n]
n ·
[
1− θeε

(
MDK
ησ(n)

)] (10)

We show that with σ(n) that decays according to (7) we have that

θeε

(
2L
σ(n)

)
→ 1 and θeε

(
MDK

ησ(n)

)
→ 1− 2C1e

ε
2

n
.

Let’s first focus briefly on the behavior of the Lambert W function. Formally, the Lambert W
function is an implicit function defined as the inverse of f(w) = wew, meaning that for any
x one has W (x)eW (x) = x. As an interesting fact, we note that the Lambert W function’s
behavior is approximately logarithmic, e.g. log(x) > W (x) > log4(x), where by log we
denote the natural logarithm. We also denote the argument of the W Lambert function
in σ(n) as x = n2

2C2
1π

+ C2. Using this fact, an immediate consequence of Lemma 8 is that,
when plugging in the σ(n) from (7), we get

θeε

(
2L
σ(n)

)
= 1− o(σ3) = 1− o

(
1√

W 3(x)

)
= 1− o

(
1

(logn)3/2

)

8
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since e−
c2

8σ2 · 1
σ2 → 0 as the exponential decays faster than the polynomial. Next, we study

θeε
(
MDK
ησ(n)

)
. Again by Lemma 8, we have

θeε

(
MDK

ησ(n)

)
= 1− 1√

2π
e
ε
2 e
−

M2D2
K

8η2σ(n)2

(
4ησ(n)
MDK

+O(σ(n)3)
)

= 1− 1√
2π
e
ε
2 e−

W (x)
2

(
2√
W (x)

+O

(
1

W (x)3/2

))

= 1− 2e ε2√
2π

1√
eW (x)W (x)

+O

(
1√

eW (x)W (x)3

)

= 1− 2e ε2√
2πx

+O

(
1√

x log(x)

)
= 1− 2C1e

ε
2

n
+O

(
1

n log(n)

)
(11)

Going back to the expression in (10) we finally have that

δ =

(
1− o

(
1

(log(n))3/2

)) [
1−

(
1− 2C1e

ε
2

n +O
(

1
n log(n)

))n]
n ·
[
1−

(
1− 2C1e

ε
2

n +O
(

1
n log(n)

))]

=

(
1− o

(
1

(log(n))3/2

))[
1−

(
1− 2C1e

ε
2 +O(1/ log(n))

n

)n]
2C1e

ε
2 +O

(
1

log(n)

)
=

(
1− o

(
1

(log(n))3/2

)) [
1− e−2C1e

ε
2 +O(1/ log(n))

]
2C1e

ε
2 +O

(
1

log(n)

)
=
(

1− o
(

1
(log(n))3/2

))[
1− e−2C1e

ε
2 +O

(
1

log(n)

)](
1

2C1e
ε
2
−O

(
1

log(n)

))
= 1− e−2C1e

ε
2

2C1e
ε
2

+O

(
1

log(n)

)
where the last equality holds because f(n) = O

(
1

log(n)

)
+ o

(
1

(log(n))3/2

)
= O

(
1

log(n)

)
.
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Figure 3: Convergence of δ to δ∗G. We consider η ∈ {0.02, 0.01} and the other parameters
are listed in Appendix G.
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E Proof of Theorem 6

We show again that δ converges to a non-zero value as n goes to ∞. In fact, again following
the proof of (Asoodeh et al. (2020) Theorem 3), we get that,

δ =
(

1− e
ε
2−

L
vi

)
+
·

n∏
t=i+1

(
1− e

ε
2−

M(b−a)
2ηvt

)
+

=
(

1− e
ε
2−

2Lη log( i
α

C1
+C2)

M(b−a)

)
+

n∏
t=i+1

(
1− C1e

ε
2

tα + C1C2

)
+

We know that, for a sequence at of positive values,
∏∞
t=1(1 − at) converges to a non-zero

number if and only if
∑∞
t=1 at converges. Here we have that

∞∑
t=i+1

C1e
ε
2

tα + C1C2
≤

∞∑
t=i+1

C1e
ε
2

tα

and, since α > 1 the right hand side converges, hence δ converges to a non-zero number. Let
now f(n) =

∏n
t=i+1

(
1− C1e

ε
2

tα+C1C2

)
+

. To find the limit f(∞) we can first log-transform this
function, and then upper bound the infinite sum with an integral before transforming back.
Since log

(
1− C1e

ε
2

tα+C1C2

)
is monotonically increasing in t, we have

log(f(n)) =
n∑

t=i+1
log
(

1− C1e
ε
2

tα + C1C2

)

<

∫ n

i+1
log
(

1− C1e
ε
2

tα + C1C2

)
dt

→
∫ ∞
i+1

log
(

1− C1e
ε
2

tα + C1C2

)
dt.

This integral can be written in closed form using the hypergeometric function, or approximated
numerically.
The convergence result that we get is slightly conservative, since we found an upper bound
for log(f(n)). However, we can find an easy lower bound by just noticing that

log(f(∞)) >
∫ ∞
i

log
(

1− C1e
ε
2

tα + C1C2

)
dt.

When i is not too small, the difference between the upper and lower bound is negligible,
as it is confirmed by what we see in the right panel of Figure 1, where the convergence to
the upper bound appears to be impeccable. Since the convergence is not exactly to δ∗, we
cannot find an explicit convergence rate the same way we did in Section 4. However, we see
in the left panel of Figure 4 that the convergence rate empirically appears to be 1/ log(n).

F Proof of Theorem 7

This proof combines elements of the proofs of Theorem 5 and Theorem 6 to show that
asymptotically the terms Bt = θeε

(
MDK
ησt

)
behave approximately as 1−O(1/tα) as t grows.

We define x = t2α

2πC2
1

+ C2 so that σt = MDK

2η
√
W (x)

and get, as in (11),

θeε

(
MDK

ησt

)
= 1− 1√

2π
e
ε
2 e
−
M2D2

K
8η2σ2

t

(
4ησt
MDK

+O(σ3
t )
)

= 1− 2e ε2√
2πx

+O

(
1√

x log(x)

)
= 1− 2C1e

ε
2

tα
+O

(
1

tα log(t)

)

10
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This already confirms us that δ∗ converges to a finite non zero value, since the asymptotic
behavior of each term in the infinite product is the same as in the Laplace case. To
express such limit in a more tractable way we follow the proof of Theorem 6 and write
f(n) =

∏n
t=i+1 θeε

(
MDK
ησt

)
and approximate the infinite sum log(f(∞)) with an integral.

log(f(n)) =
n∑

t=i+1
log
(
θeε

(
MDK

ησt

))

=
n∑

t=i+1
log
(
θeε

(
2

√
W

(
t2α

2πC2
1

+ C2

)))

<

∫ n

i+1
log
(
θeε

(
2

√
W

(
x2α

2πC2
1

+ C2

)))
dx

→
∫ ∞
i+1

log
(
θeε

(
2

√
W

(
x2α

2πC2
1

+ C2

)))
dx

This confirms us that

δ∗ = θeε
(2L
σi

)
· exp

{∫ ∞
i+1

log
(
θeε

(
2

√
W

(
x2α

2πC2
1

+ C2

)))
dx

}
.

As before, we see empirically in the right panel of Figure 4 that the convergence rate appears
to be 1/ log(n).

1

2

3

7.5 8.0 8.5 9.0
log10(n)

1/
(δ

−
δ∗ )

2

3

4

5

7.5 8.0 8.5 9.0
log10(n)

1/
(δ

−
δ∗ )

Figure 4: The convergence rates of δ to δ∗,oL (left) and δ∗,oG (right) in the online setting
appears to be logarithmic for both the Laplace and Gaussian noise.

G Description of experimental setting

Here we list the parameters that we used in the experiments throughout the paper.
For the shuffled PNSGD with Laplace noise (left and center panels of Figure 1) we used
L = 10, β = 0.5, ρ = 0, η = 0.1, ε = 1, (a, b) = (0, 1), C1 = 105 and C2 = 2. For the shuffled
PNSGD with Gaussian noise (left and center panels of Figure 2) we used L = 10, β = 0.5, ρ =
0, η = 0.1, ε = 1, DK = 1, C1 = 105 and C2 = 100 while in Figure 3 we considered different
values of η ∈ {0.02, 0.01}. For the online settings we used the same set of parameters:
L = 10, β = 0.5, ρ = 0, ε = 1, η = 0.01, α = 1.5, i = 100, C1 = 100, C2 = 100 and as usual we
set (a, b) = (0, 1) in the Laplace case and DK = 1 in the Gaussian case.
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