
Published as a conference paper at ICLR 2021

COMPUTING DIFFERENTIAL PRIVACY GUARANTEES
FOR HETEROGENEOUS COMPOSITIONS USING FFT

Antti Koskela & Antti Honkela
Helsinki Institute for Information Technology HIIT,
Department of Computer Science, University of Helsinki, Finland
{antti.h.koskela,antti.honkela}@helsinki.fi

ABSTRACT

The recently proposed Fast Fourier Transform (FFT)-based accountant for evalu-
ating (ε, δ)-differential privacy guarantees using the privacy loss distribution for-
malism has been shown to give tighter bounds than commonly used methods such
as Rényi accountants when applied to compositions of homogeneous mechanisms.
This approach is also applicable to certain discrete mechanisms that cannot be
analysed with Rényi accountants. We extend this approach to compositions of
heterogeneous mechanisms. We carry out a full error analysis that allows choos-
ing the parameters of the algorithm such that a desired accuracy is obtained.

1 INTRODUCTION

Differential privacy (DP) (Dwork et al., 2006) has become the standard approach for privacy-
preserving machine learning. When using DP, one challenge is to accurately bound the compound
privacy loss of the increasingly complex DP algorithms. This work extends the recent Fast Fourier
Transform (FFT) accountant by Koskela et al. (2020a;b) to heterogeneous compositions of discrete
mechanisms, using the privacy loss distribution (PLD) formalism introduced by Sommer et al.
(2019). We also illustrate how to apply this accountant to continuous mechanisms and discrete-
continuous hybrids. Experimental comparisons to the Tensorflow moments accountant show that the
FFT-based method allows approximately 1.5 times as many compositions for equal privacy guaran-
tees. We provide a rigorous error analysis for the proposed method in terms of the truncation and
discretisation parameters L and n. This analysis both leads to strict upper (ε, δ)-bounds and gives
means for automatically tuning these parameters. The analysis also gives a bound for the computa-
tional complexity in terms of the error which is analogous to the one given by Murtagh and Vadhan
(2018). We also show how to speed up the evaluation using the Plancherel theorem, at the cost of
increased pre-computation and memory usage.

More details on the results can be found in the supplementary material.

1.1 DIFFERENTIAL PRIVACY AND PRIVACY LOSS DISTRIBUTION

We first recall some basic definitions of DP (Dwork et al., 2006). An input data set containing N
data points is denoted as X = (x1, . . . , xN ) ∈ XN , where xi ∈ X , 1 ≤ i ≤ N .
Definition 1. We say data sets X and Y are neighbours in remove/add relation if we get one by
removing/adding an element from/to the other (denoted ∼R). We say X and Y are neighbours in
substitute relation if we get one by substituting one element in the other (denoted ∼S).
Definition 2. Let ε > 0 and δ ∈ [0, 1]. Let ∼ define a neighbouring relation. Mechanism M :
XN → R is (ε, δ,∼)-DP if for every X ∼ Y and every measurable set E ⊂ R we have

Pr(M(X) ∈ E) ≤ eεPr(M(Y ) ∈ E) + δ.

When the relation is clear from context or irrelevant, we will abbreviate it as (ε, δ)-DP. We callM
tightly (ε, δ,∼)-DP, if there does not exist δ′ < δ such thatM is (ε, δ′,∼)-DP.

We consider discrete-valued one-dimensional mechanismsM which can be seen as mappings from
XN to the set of discrete-valued random variables. The generalised probability density functions of
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M(X) andM(Y ), denoted fX(t) and fY (t), respectively, are given by

fX(t) =
∑

i
aX,i · δtX,i(t), fY (t) =

∑
i
aY,i · δtY,i(t), (1.1)

where δt(·), t ∈ R, denotes the Dirac delta function centred at t, and tX,i, tY,i ∈ R and aX,i, aY,i ≥
0. The privacy loss distribution is defined as follows.
Definition 3. Let M : XN → R, R ⊂ R, be a discrete-valued randomised mechanism and let
fX(t) and fY (t) be probability density functions as defined by (B.1). We define the generalised
privacy loss distribution (PLD) ωX/Y as

ωX/Y (s) =
∑

tX,i=tY,j
aX,i · δsi(s), si = log

(
aX,i
aY,j

)
. (1.2)

2 FOURIER ACCOUNTANT FOR HETEROGENEOUS COMPOSITIONS

Similarly as in (Koskela et al., 2020b), we place the PLD on a grid Xn = {x0, . . . , xn−1}, n ∈ Z+,
where xi = −L+ i∆x, ∆x = 2L/n. Suppose the distribution ω of the PLD is of the form

ω(s) =
∑

i
ai · δsi(s), (2.1)

where ai ≥ 0 and −L ≤ si ≤ L−∆x for all i. The integral Es∼ω(s)[(1− eε−s)] then leads to the
tight δ(ε)-value (see the Supplements). We define the right grid approximation

ωR(s) :=
∑

i
ai · δsRi (s), sR

i = min{x ∈ Xn : x ≥ si}. (2.2)

We directly get the following result which holds for heterogeneous compositions:
Lemma 4. Consider a composition with PLDs ω1, · · · , ωk (as in eq. C.3). Let δR(ε) correspond-
ingly be determined by ωR

1 , . . . , ω
R
k (as in eq. C.4). Then for all ε > 0 : δ(ε) ≤ δR(ε).

We note that often a moderate L is sufficient for the condition −L ≤ si ≤ L −∆x to hold for all
i. We also provide analysis for the case where this assumption does not hold (Supplements). This is
the case, for example, for the discrete Gaussian distribution (Canonne et al., 2020).

We compute strict δ(ε)-upper bound as follows: using values L > 0 and n ∈ Z+, we form a gridXn

and place each PLD ωi, 1 ≤ i ≤ k, on Xn to obtain ωR
i ’s as defined in (C.4). For examples of ωi’s

in case of the randomised response and a discretisation of the continuous Gaussian mechanism, see
the experiments of Section 5.1. We then approximate δR(ε) using Algorithm 2. Our error analysis
bounds the error incurred by Algorithm 2. By adding this error to the approximated δ(ε)-values, we
get strict upper bounds.

Algorithm 1 Fourier Accountant Algorithm for Heterogeneous Discrete-Valued Mechanisms

Input: distributions ω1, . . . , ωm of the form ωj(s) =
∑
i a
j
i · δsi(s), 1 ≤ j ≤ m, such that

si = −L + i∆x, where n is even and, 0 ≤ i ≤ n − 1, ∆x = 2L/n. Numbers of compositions
for each mechanism, k1, . . . , km.

Set
aj =

[
aj0 . . . ajn−1

]T
, 1 ≤ j ≤ m, D =

[
0 In/2

In/2 0

]
.

For each j, 1 ≤ j ≤ m, evaluate the FFT: ãj = F(Daj).
Compute the element-wise products and apply F−1:

b =
[
DF−1

(
(ã1)�k1 � · · · � (ãm)�km

)]
.

Approximate: δ(ε) ≈ 1−
m∏
`=1

(1− δX/Y,`(∞))k` +
∑

{` :−L+`∆x>ε}

(
1− eε−(−L+`∆x)

)
b`,

where δX/Y,`(∞) is the probability mass outside the shared support ofM`(X) andM`(Y ).
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3 UPPER BOUND FOR THE COMPUTATIONAL COMPLEXITY

The results by Murtagh and Vadhan (2018) state that there is no algorithm for computing tight (ε, δ)-
bounds that would have polynomial complexity in k. However, Theorem 1.7 by Murtagh and Vadhan
(2018) states that allowing a small error in the output, the bounds can be evaluated efficiently. More
precisely, given a non-adaptive composition of the mechanismsM1, . . . ,Mk, each mechanismMi

being tightly (εi, δi)-DP, the result states that there exists an algorithm that outputs ε̃(δ) such that

ε(δ) ≤ ε̃(δ) ≤ ε(e−η
2/2 · δ) + η,

where ε(δ) gives a tight bound for the composition, and the algorithm runs in time

O
(
k3 · ε · (1 + ε)

η
log

k2 · ε · (1 + ε)

η

)
, where ε = 1

k

∑
i
εi. (3.1)

Assuming there arem < k distinct mechanisms in the composition, our error analysis (Supplements)
leads to a slightly tighter complexity bound for the evaluation of tight δ as a function of ε:

Theorem 5. Consider a non-adaptive composition of the mechanisms M1, . . . ,Mk with corre-
sponding worst-case pairs of distributions fX,i and fY,i, 1 ≤ i ≤ k. Suppose the sequence
M1, . . . ,Mk consists of m distinct mechanisms. Then, it is possible to have an approximation
of δ(ε) with error less than η with number of operations

O
(

2m · k2 · Ck
η

log
k2 · Ck
η

)
,

where

Ck = max{ 1
k

∑
i

D∞(fX,i||fY,i), 1
k

∑
i

D∞(fY,i||fX,i)}, D∞(fX ||fY ) = sup
aY,i 6=0

log
aX,i
aY,i

and the additional factor in the leading O-constant is the leading constant of the FFT algorithm.

4 FAST EVALUATION USING THE PLANCHEREL THEOREM

When using Algorithm 2 to approximate δ(ε), we need to evaluate an expression of the form

bk = DF−1
(
F(Da1)�k1 � · · · � F(Dam)�km

)
(4.1)

and the sum
δ̃(ε) =

∑
−L+`∆x>ε

(
1− eε−(−L+`∆x)

)
bk` . (4.2)

When evaluating δ̃(ε) for different numbers of compositions, the transform F−1 is the most expen-
sive part if the vectors F(Dai) are precomputed. The following lemma shows that updates of δ̃(ε)
can actually be performed without using F−1, i.e., in linear time.

Lemma 6. Denote wε ∈ Rn such that (wε)` = max{1− eε−(−L+`∆x), 0}. Then, we have that

δ̃(ε) =
1

n
〈F(Dwε),F(Da1)�k1 � · · · � F(Dam)�km〉. (4.3)

We instantly see that if the vectors F(Dwε) and F(Dai), 1 ≤ i ≤ m, are precomputed, δ̃(ε)
can be updated in O(n) time. We believe this approach can be used for designing efficient online
(ε, δ)-accountants that also give tight guarantees.

Experimental Illustration. Consider computing δ(ε)-bound for the subsampled Gaussian mech-
anism (see Sec. 5.2), for q = 0.02 and σ = 2.0. Evaluate δ(ε) after k = 100, 200, . . . , 500 com-
positions at ε = 1.0. Table 4 illustrates the compute time for each update of δ(ε), using a) a
pre-computed vector F(Da), the transform F−1 and the summation (D.13) and b) pre-computed
vectors F(Da)�100 and F(Dwε) and the inner product (D.14).
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n t (ms), eq. D.13 t (ms), eq. D.14 δ(ε)
5 · 104 5.8 0.18 2.900925 · 10−6

1 · 105 12 0.36 2.851835 · 10−6

1 · 106 140 5.1 2.846942 · 10−6

5 · 106 750 30 2.846941 · 10−6

Table 1: Compute times (in milliseconds) for an update of δ(ε)-bound using the summation of (D.13)
and the inner product of (D.14) and the δ(ε)-upper bound after k = 500 compositions. We see that
using Lemma D.8 an accurate update of δ(ε) is possible in less than one millisecond.

5 EXPERIMENTS

5.1 EXPERIMENT 1: COMPOSITIONS OF DISCRETE AND CONTINUOUS MECHANISMS

We consider a non-adaptive composition of k mechanisms of the form M(X) =(
M1(X),M̃2(X), . . . ,Mk−1(X),M̃k(X)

)
, where eachMi is a Gaussian mechanism with sen-

sitivity 1, and each M̃i is a randomised response mechanism with probability of a correct answer p,
1
2 < p < 1. We know that for the randomised response the PLD leading to the worst-case bound is
given by ωR(s) = p·δcp(s)+(1−p)·δ−cp(s), where cp = log p

1−p (Koskela et al., 2020b). Also, for
the PLD ωG of the Gaussian mechanism we know that (Sommer et al., 2019) ωG ∼ N

(
1

2σ2 ,
1
σ2

)
.

Let the ∆x-grid be defined as above, i.e., let L > 0, n ∈ Z+, ∆x = 2L/n and si = −L+ i∆x for
all i ∈ Z. Define

ωG,max(s) =
∑n−1

i=0
a+
i · δsi(s), a+

i = ∆x ·maxs∈[si−1,si] ωG(s). (5.1)

Using a bound for the moment generating function of the infinitely extending counterpart of ωmax

and by using Algorithm 2 we obtain a numerical value δmax(ε) (depending on n and L) for which
we have that δ(ε) ≤ δmax(ε), where δ(ε) gives a tight bound for the compositionM(X) (see the
Supplements). As a comparison, in Figure 1 we also show the guarantees given by Tensorflow
moments accountant. We know that for α > 1, the α-RDP of the randomised response is given
by 1

α−1 log
(
pα(1 − p)1−α + (1 − p)αp1−α) and correspondingly for the Gaussian mechanism by

α
2σ2 (Mironov, 2017). As is commonly done, we evaluate RDPs for integer values and sum them
up along the compositions. Then, using the moments accountant method the corresponding (ε, δ)-
bounds are obtained (Abadi et al., 2016).

5.2 HETEROGENEOUS SUBSAMPLED GAUSSIAN MECHANISM

We next show how to compute upper bounds for heterogeneous compositions of the subsampled
Gaussian mechanism. We consider the Poisson subsampling and ∼R-neighbouring relation. For a
subsampling ratio q and noise level σ, the continuous PLD is given by (Koskela et al., 2020a)

ω(s) =

{
f(g(s))g′(s), if s > log(1− q),
0, otherwise,

where

f(t) =
1√

2πσ2
[qe

−(t−1)2

2σ2 + (1− q)e−
t2

2σ2 ], g(s) = σ2 log

(
es − (1− q)

q

)
+

1

2
.

We obtain an upper-bound PLD ωmax such that at each ∆x-interval of the grid Xn, we place the
maximal value of ω multiplied by ∆x to the right end-point as a discrete mass (Koskela et al.,
2020b, Supplements). Then, using Alg. 2 we obtain a numerical value δmax(ε) such that after k
compositions, δ(ε) ≤ δmax(ε), where δ(ε) gives a tight bound for the heterogeneous composition
of subsampled Gaussian mechanisms. Figure 2 illustrates the upper bound δmax(ε) as k grows and
σ decreases, when L = 10 and n = 106. For comparison, we also show the numerical values given
by Tensorflow moments accountant (Abadi et al., 2016).
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Figure 1: Bounds for δ(ε) computed using Algorithm 2 (FA) and Tensorflow moments accountant
(TF MA), when σ = 5.0 and p = 0.52, for ε = 2.0, 4.0. We see that when δ ∈ [10−6, 10−4],
FA allows approximately 1.5 times as many compositions as TF MA for the same ε. We use here
L = 10 and n = 105.
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TF MA, q = 0.02, = (3.0, , 2.0)
FA, q = 0.02, = (3.0, , 2.0)
TF MA, q = 0.01, = (3.0, , 2.5)
FA, q = 0.01, = (3.0, , 2.5)

Figure 2: Bounds for δ(ε) computed using Algorithm 2 (FA) and Tensorflow moments accountant
(TF MA). In the first option ε = 1.0, q = 0.02 and σ decreases linearly from 3.0 to 2.0. In the
second option ε = 1.5, q = 0.01 and σ decreases linearly from 3.0 to 2.5. For each value of σ, 500
compositions are evaluated. We see that when δ ∈ [10−6, 10−4], FA allows approximately 1.5 times
as many compositions as TF MA for the same guarantees.

6 CONCLUSIONS

We have extended the Fast Fourier Transform-based approach for computing tight privacy bounds to
heterogeneous compositions. Using the derived error bounds it is possible to determine appropriate
values for all the parameters of the algorithm. The error analysis also led to a bound for the com-
putational complexity of the algorithm that is slightly better than the existing theoretical complexity
bound for obtaining (ε, δ)-bounds within a given error tolerance. Using the Plancherel theorem,
we have shown how to further speed up the evaluation of the privacy guarantees. We believe this
gives tools to implement tight privacy accountants to services that require minimal delays. We em-
phasise that due to the construction of the algorithm and to the rigorous error analysis, the reported
(ε, δ)-bounds are strict upper privacy bounds.
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A DETAILS FOR THE EXPERIMENTS OF SECTION 5.1

For the PLD ωG of the Gaussian mechanism we know that (Sommer et al., 2019)

ωG ∼ N
(

1

2σ2
,

1

σ2

)
.

In order to carry out an error analysis for the approximations given in Section 5.1, we define the
infinite extending grid approximation of ωmax. Let L > 0, n ∈ Z+, ∆x = 2L/n and let the grid
Xn be defined as in (C.2). Define

ωmax(s) =

n−1∑
i=0

a+
i · δsi(s),

where si = i∆x and
a+
i = ∆x · max

s∈[si−1,si]
ωG(s), (A.1)

and define
ω∞max(s) =

∑
i∈Z

a+
i · δsi(s). (A.2)

To obtain the bounds of Theorem D.2 for the compositions (and subsequently strict upper bound for
δ(ε)), the error analysis has to be carried out for the distribution ω∞max. To this end, we need bounds
for the moment generating functions of −ω∞max and ω∞max.

To show that ω∞max indeed leads to an upper bound for δ(ε), we refer to (Koskela et al., 2020b),
where this is shown for the compositions of the subsampled Gaussian mechanism. The proof here
goes analogously, and we have that for all ε > 0,

δ(ε) ≤ δ∞max(ε),

where δ∞max(ε) is the tight bound for the composition involving ω∞max.

To evaluate α+(λ) and α−(λ) for the upper bound of Theorem D.2, we need the moment generating
functions of −ω∞max and ω∞max. We have the following bound for ω∞max. We note that E[eλωmax ] can
be evaluated numerically.
Lemma A.1. Let 0 < λ ≤ L and assume σ ≥ 1 and ∆x ≤ c · L, 0 < c < 1. The moment
generating function of ω∞max can be bounded as

E[eλω
∞
max ] ≤ E[eλωmax ] + err(λ, L, σ),

where

err(λ, L, σ) = exp

(
3λ

2σ2

)(∫ −L
−∞

ω̃(s) ds+

∫ ∞
L−∆x

ω̃(s) ds

)
, ω̃ ∼ N

(
1 + 2λ

2σ2
,

1

σ2

)
.

(A.3)

Proof. The moment generating function of ω∞max is given by

E[eλω
∞
max ] =

∫ L

−L
eλsω∞max(s) ds+

∫ −L
−∞

eλsω∞max(s) ds+

∫ ∞
L

eλsω∞max(s) ds

≤ E[eλωmax ] +

∫ −L
−∞

eλsωG(s) ds+

∫ ∞
L−∆x

eλsωG(s) ds

(A.4)

We arrive at the claim by observing that for ωG ∼ N
(

1
2σ2 ,

1
σ2

)
,∫ −L

−∞
eλsωG(s) ds = exp

(
3λ

2σ2

)∫ −L
−∞

ω̃(s) ds,

where ω̃ ∼ N
(

1+2λ
2σ2 ,

1
σ2

)
and similarly for the second term in (A.3).
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Using a reasoning analogous to the proof of Lemma A.1, we get the following. We note that
E[e−λωmin ] can be evaluated numerically.

Corollary A.2. The moment generating function of −ω∞max can be bounded as

E[e−λω
∞
max ] ≤ E[e−λωmax ] + err(λ, L, σ),

where err(λ, L, σ) is defined as in (A.3).

Remark A.3. In the experiments, the error term err(λ, L, σ) was found to be negligible.

B PRIVACY LOSS DISTRIBUTION

We here introduce in more detail the basic tool for obtaining tight privacy bounds: the privacy loss
distribution (PLD). The results in Subsection B.1 are reformulations of the results given by Meiser
and Mohammadi (2018) and Sommer et al. (2019).

B.1 PRIVACY LOSS DISTRIBUTION FORMALISM

We consider discrete-valued one-dimensional mechanismsM which can be seen as mappings from
XN to the set of discrete-valued random variables. The generalised probability density functions of
M(X) andM(Y ), denoted fX(t) and fY (t), respectively, are given by

fX(t) =
∑

i
aX,i · δtX,i(t),

fY (t) =
∑

i
aY,i · δtY,i(t),

(B.1)

where δt(·), t ∈ R, denotes the Dirac delta function centred at t, and tX,i, tY,i ∈ R and aX,i, aY,i ≥
0. We refer to Koskela et al. (2020b) for more details of the notation. The privacy loss distribution
is defined as follows.

Definition B.1. Let M : XN → R, R ⊂ R, be a discrete-valued randomised mechanism and
let fX(t) and fY (t) be probability density functions of the form (B.1). We define the generalised
privacy loss distribution (PLD) ωX/Y as

ωX/Y (s) =
∑

tX,i=tY,j
aX,i · δsi(s), (B.2)

where si = log
(
aX,i
aY,j

)
.

B.2 TIGHT (ε, δ)-BOUNDS FOR COMPOSITIONS VIA PLDS

Let the generalised probability density functions fX and fY of the form (B.1). We define the con-
volution fX ∗ fY as

(fX ∗ fY )(t) =
∑

i,j
aX,i aY,j · δtX,i+tY,j (t).

We consider non-adaptive compositions of the form

M(X) =
(
M1(X), . . . ,Mk(X)

)
and we denote by fX,i(t) the density function ofMi(X) for each i, and by fY,i(t) that ofMi(Y ).
For each i, 1 ≤ i ≤ k, we denote the PLD as defined by Def. B.1 and densities fX,i(t) and fY,i(t)
by ωX/Y,i.

The following theorem shows that the tight (ε, δ)-bounds for compositions of non-adaptive hetero-
geneous mechanisms are obtained using convolutions of PLDs (see also Thm. 1 by Sommer et al.
(2019)). A proof is given in the Appendix.

Theorem B.2. Consider a non-adaptive composition of k independent mechanismsM1, . . . ,Mk

and neighbouring data sets X and Y . The composition is tightly (ε, δ)-DP for δ(ε) given by

δ(ε) = max{δX/Y (ε), δY/X(ε)},

8



Published as a conference paper at ICLR 2021

where

δX/Y (ε) = 1−
k∏
`=1

(1− δX/Y,`(∞)) +

∫ ∞
ε

(1− eε−s)
(
ωX/Y,1 ∗ · · · ∗ ωX/Y,k

)
(s) ds,

δX/Y,`(∞) =
∑

{ti : P(M`(X)=ti)>0, P(M`(Y )=ti)=0}

P(M`(X) = ti) (B.3)

and ωX/Y,1 ∗ · · · ∗ ωX/Y,k denotes the convolution of the density functions ωX/Y,`, 1 ≤ ` ≤ k.
δY/X(ε) can be analogously obtained using the PLDs ωY/X,1, . . . , ωY/X,k.

Proof. See (Koskela and Honkela, 2021).

We remark that finding the outputs Mi(X) and Mi(Y ), 1 ≤ i ≤ k, that give the maximal δ(ε)
is application-specific and has to be carried out individually for each case, similarly as, e.g., in the
case of RDP (Mironov, 2017). In the experiments of Section 5 it will be clear how to determine the
worst-case distributions fX,i and fY,i.

C FOURIER ACCOUNTANT FOR HETEROGENEOUS COMPOSITIONS OF
DISCRETE MECHANISMS

We next describe in more detail the numerical method for computing tight DP guarantees for het-
erogeneous compositions of discrete-valued mechanisms. The method is closely related to the ho-
mogenous case described in (Koskela et al., 2020b). However, the error analysis is tailored to the
heterogeneous case and we consider here also the error induced by the grid approximation.

C.1 FAST FOURIER TRANSFORM

Let
x = [x0, . . . , xn−1]

T
, w = [w0, . . . , wn−1]

T ∈ Rn.

The discrete Fourier transform F and its inverse F−1 are defined as (Stoer and Bulirsch, 2013)

(Fx)k =
∑n−1

j=0
xje
−i 2πkj/n,

(F−1w)k =
1

n

∑n−1

j=0
wje

i 2πkj/n,
(C.1)

where i =
√
−1. Using the Fast Fourier Transform (FFT) (Cooley and Tukey, 1965) reduces the run-

ning time complexity to O(n log n). Also, FFT enables evaluating discrete convolutions efficiently.
The convolution theorem (Stockham Jr, 1966) states that∑n−1

i=0
viwk−i = F−1(Fv �Fw),

where � denotes the element-wise product and the summation indices are modulo n.

C.2 GRID APPROXIMATION

Similarly as in (Koskela et al., 2020b), we place the PLD on a grid

Xn = {x0, . . . , xn−1}, n ∈ Z+, (C.2)

where
xi = −L+ i∆x, ∆x = 2L/n.

Suppose the distribution ω of the PLD is of the form

ω(s) =
∑

i
ai · δsi(s), (C.3)

9
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where ai ≥ 0 and −L ≤ si ≤ L−∆x for all i. We define the grid approximations

ωL(s) :=
∑

i
ai · δsLi (s),

ωR(s) :=
∑

i
ai · δsRi (s),

(C.4)

where
sL
i = max{x ∈ Xn : x ≤ si},
sR
i = min{x ∈ Xn : x ≥ si}.

We note that si’s correspond to the logarithmic ratios of probabilities of individual events. Thus,
often a moderate L is sufficient for the condition

−L ≤ si ≤ L−∆x

to hold for all i. We also provide analysis for the case where this assumption does not hold in the
Appendix. This is the case, for example, for the discrete Gaussian distribution (Canonne et al.,
2020). From (C.4) we directly get the following result:
Lemma C.1. Let δ(ε) be given by the integral formula of Theorem B.2 for PLDs ω1, · · · , ωk of the
form (C.3). Let δL(ε) and δR(ε) correspondingly be determined by the left and right approximations
ωL

1 , . . . , ω
L
k and ωR

1 , . . . , ω
R
k , as defined in (C.4). Then for all ε > 0 :

δL(ε) ≤ δ(ε) ≤ δR(ε).

Proof. See (Koskela and Honkela, 2021).

C.3 TRUNCATION AND PERIODISATION

By truncating convolutions and periodising the PLD distributions we arrive at periodic sums to
which the FFT is directly applicable. These operations are analogous to the homogeneous case
described in (Koskela et al., 2020b). We describe them next shortly.

Suppose ω1 and ω2 are defined such that

ω1(s) =
∑

i
ai · δsi(s), ω2(s) =

∑
i
bi · δsi(s), (C.5)

where for all i: ai, bi ≥ 0 and si = i∆x. The convolution ω1 ∗ ω2 can then be written as

(ω1 ∗ ω2)(s) =
∑

i,j
aibj · δsi+sj (s)

=
∑

i

(∑
j
ajbi−j

)
· δsi(s).

(C.6)

Let L > 0. We truncate convolutions to the interval [−L,L]:

(ω1 ∗ ω2)(s) ≈
∑

i

(∑
−L≤sj<L

ajbi−j

)
· δsi(s)

=: (ω1 ~ ω2)(s).

For ω1 of the form (C.5), we define ω̃1 to be a 2L-periodic extension of ω1 from [−L,L) to R, i.e.,
ω̃1 is of the form

ω̃1(s) =
∑

m∈Z

∑
i
ai · δsi+m·2L(s).

For ω1 and ω2 of the form (C.5), we approximate the convolution ω1 ∗ ω2 as

ω1 ∗ ω2 ≈ ω̃1 ~ ω̃2. (C.7)

Since ω1 and ω2 are defined on an equidistant grid, FFT can be used to evaluate the approximation
ω̃1 ~ ω̃2 as follows:
Lemma C.2. Let ω1 and ω2 be of the form (C.5), such that si = −L+ i∆x, 0 ≤ i ≤ n− 1, where
L > 0, n is even and ∆x = 2L/n. Define

a = [a0 . . . an−1]
T
, b = [b0 . . . bn−1]

T

10
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and

D =
[

0 In/2
In/2 0

]
∈ Rn×n.

Then,

(ω̃1 ~ ω̃2)(s) =
∑n−1

i=0
ci · δsi(s),

where
ci =

[
DF−1

(
F(D a)�F(D b)

)]
i
,

and � denotes the element-wise product of vectors.

Proof. See (Koskela and Honkela, 2021).

Since the coefficients of ω̃1 ~ ω̃2 are exactly given by the discrete Fourier transform, we are able to
analyse the error induced by the FFT approximation by only considering the error of the approxi-
mation (C.7).

Algorithm 2 Fourier Accountant Algorithm for Heterogeneous Discrete-Valued Mechanisms

Input: distributions ω1, . . . , ωm of the form

ωj(s) =
∑

i
aji · δsi(s),

1 ≤ j ≤ m, such that si = −L + i∆x, where n is even and, 0 ≤ i ≤ n − 1, ∆x = 2L/n.
Numbers of compositions for each mechanism, k1, . . . , km.

Set
aj =

[
aj0 . . . ajn−1

]T
, 1 ≤ j ≤ m.

Evaluate the convolutions using Lemma C.2 and FFT.
For each j, 1 ≤ j ≤ m, evaluate the FFT:

ãj = F(Daj).

Compute the element-wise products and apply F−1:

b =
[
DF−1

(
(ã1)�k1 � · · · � (ãm)�km

)]
.

Approximate δ(ε):

δ(ε) ≈ 1−
m∏
`=1

(1− δX/Y,`(∞))k` +
∑

{` :−L+`∆x>ε}

(
1− eε−(−L+`∆x)

)
b`,

where δX/Y,`(∞) is defined in Theorem B.2.

C.4 COMPUTING UPPER BOUNDS FOR δ(ε)

Given a discrete-valued PLD distribution ω, we get a strict upper δ(ε)-DP bound as follows. Using
parameter values L > 0 and n ∈ Z+, we form a gridXn as defined in (C.2) and place each PLDs ωi,
1 ≤ i ≤ k, on Xn to obtain ωR

i as defined in (C.4). We then approximate δR(ε) using Algorithm 2.
We estimate the error incurred by truncation of convolutions periodisation of PLDs using Thm. D.1
(or Thm. D.2 in case the support of ωR

i is no included in the interval [−L,L]). By adding this error
to the approximation given by Algorithm 2 we obtain a strict upper bound for δ(ε).

The error for the truncation of convolutions periodisation of PLDs is given only in terms of the
parameter L. The parameter n can then be increased in case the discretisation error bound given by
Thm. D.3 is too large.

11
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D DECOMPOSITION OF THE ERROR

When carrying out the approximations for δ(ε), we

1. First replace the PLDs ω1, . . . , ωk by the right grid approximations ωR
1 , . . . , ω

R
k . Using

the notation given above, this corresponds to the approximation δ(ε) ≈ δR(ε), i.e. to the
approximation

L∫
ε

(1− eε−s)(ω1 ∗ · · · ∗ ωk)(s) ds ≈
L∫
ε

(1− eε−s)(ωR
1 ∗ · · · ∗ ωR

k )(s) ds.

2. Then, Algorithm 2 is used to approximate δR(ε) ≈ δ̃R(ε) which in exact arithmetic corre-
sponds to the approximation

L∫
ε

(1− eε−s)(ωR
1 ∗ · · · ∗ ωR

k )(s) ds ≈
L∫
ε

(1− eε−s)(ω̃R
1 ~ · · ·~ ω̃R

k )(s) ds,

where ω̃i’s denote the periodised PLD distributions and ~ denotes the truncated convolu-
tions (described above).

We separately consider the errors arising from the periodisation and truncation of the convolutions
and from the grid approximation. This means that we bound the total error as∣∣∣δ(ε)− δ̃R(ε)

∣∣∣ =
∣∣∣δ(ε)− δR(ε) + δR(ε)− δ̃R(ε)

∣∣∣
≤
∣∣δ(ε)− δR(ε)

∣∣+
∣∣∣δR(ε)− δ̃R(ε)

∣∣∣
Theorem D.3 gives a bound for the term

∣∣δ(ε)− δR(ε)
∣∣ and Theorems D.1 and D.2 of the main

text give bounds for the term
∣∣∣δ(ε)− δ̃(ε)∣∣∣, in terms of the moment generating functions (MGFs) of

ω1, . . . , ωk and−ω1, . . . ,−ωk. The bounds for the error
∣∣∣δ(ε)− δ̃(ε)∣∣∣ can be directly used to bound

the error
∣∣∣δR(ε)− δ̃R(ε)

∣∣∣, either by numerically evaluating the MGFs of the PLDs ωR
1 , . . . , ω

R
k , or

by using MGFs of the PLDs ω1, . . . , ωk and Lemma 7 of (Koskela et al., 2020b), which states that
when 0 < λ < (∆x)−1,

E[e−λω
R

] ≤ E[e−λω] and E[eλω
R

] ≤ 1
1−λ∆xE[eλω],

where ∆x = 2L/n.

D.1 BOUNDING TAILS USING THE CHERNOFF BOUND

We obtain error bounds essentially using the Chernoff bound (Wainwright, 2019)

P[Z ≥ t] ≤ E[eλZ ]

eλt

which holds for any random variable Z and all λ > 0. Suppose ωX/Y is of the form

ωX/Y (s) =
∑

i
aX,i · δsi(s), (D.1)

where si = log
(
aX,i
aY,i

)
and aX,i, aY,i > 0. Then, the moment generating function of ωX/Y is given

by

E[eλωX/Y ] =
∑

i
eλsi · aX,i =

∑
i

(
aX,i
aY,i

)λ
aX,i. (D.2)

12
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In our analysis, we repeatedly use the Chernoff bound to bound tails of PLD distributions in terms of
pre-computable moment-generating functions. Denote Sk :=

∑k
i=1 ωi, where ωi denotes the PLD

random variable of the ith mechanism. If ωi’s are independent, we have that

E[eλSk ] =
∏k

i=1
E[eλωi ].

Then, the Chernoff bound shows that for any λ > 0∫ ∞
L

(ω1 ∗ · · · ∗ ωk)(s) ds = P[Sk ≥ L] ≤
∏k

i=1
E[eλωi ] e−λL ≤ e

∑k
i=1 αi(λ)e−λL, (D.3)

where αi(λ) = log(E[eλωi ]).

D.2 TRUNCATION AND PERIODISATION ERROR

Denote the logarithms of the moment generating functions of the PLDs as

α+
i (λ) = log

(
E[eλωi ]

)
, α−i (λ) = log

(
E[e−λωi ]

)
,

where 1 ≤ i ≤ k. Futhermore, denote

α+(λ) =
∑

i
α+
i (λ), α−(λ) =

∑
i
α−i (λ). (D.4)

To obtain α+(λ) and α−(λ), we evaluate the moment generating functions using the finite sum
(D.2).

Using the analysis given in the Appendix, we bound the errors arising from the periodisation of
the distribution and truncation of the convolutions. As a result, when combining with the Chernoff
bound (D.3), we obtain the following two bounds for the total error incurred by Algorithm 2.

Theorem D.1. Let ωi’s be defined on the grid Xn as described above (i.e., sj ∈ [−L,L − ∆x]

for all j). Let δ(ε) give the tight (ε, δ)-bound for the PLDs ω1, . . . , ωk and let δ̃(ε) be the result of
Algorithm 2. Then, for all λ > 0∣∣∣δ(ε)− δ̃(ε)∣∣∣ ≤ (eα+(λ) + eα

−(λ)
) e−Lλ

1− e−2Lλ
.

Proof. See (Koskela and Honkela, 2021).

As si’s correspond to the logarithmic ratios of probabilities of individual events, often a moderate
L is sufficient for −L ≤ si ≤ L − ∆x to hold for all i. In the Appendix, we prove the following
bound which holds also in case si’s are not inside the interval [−L,L). This happens for example in
case of the discrete Gaussian mechanism (Canonne et al., 2020).

Theorem D.2. Let the PLDs ω`, 1 ≤ ` ≤ k, take values at the equidistant points si = i∆x. Let
δ(ε) give the tight (ε, δ)-bound for the PLDs ω1, . . . , ωk and let δ̃(ε) be the result of Algorithm 2.
Then, for all λ > 0∣∣∣δ(ε)− δ̃(ε)∣∣∣ ≤ (e (k+1) maxi α

+
i (λ) − emaxi α

+
i (λ)

emaxi α
+
i (λ) − 1

+
e (k+1) maxi α

−
i (λ) − emaxi α

−
i (λ)

emaxi α
−
i (λ) − 1

)
e−Lλ

1− e−2Lλ
.

(D.5)

Proof. See (Koskela and Honkela, 2021).
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D.3 BOUND FOR THE DISCRETISATION ERROR

Let ω1, . . . , ωk be PLD distributions of the form (C.3), i.e., si’s are not necessarily on the equidistant
grid. Denote

ω`(s) =
∑

i
a`i · δs`i (s).

Denote the right grid approximations (as defined in (C.4))

ωR
` (s) =

∑
i
a`i · δsR,`i

(s)

and the tight (ε, δ)-bound corresponding to the PLD ωR
1 ∗ · · · ∗ωR

k by δR(ε). We have the following
bound for the error arising from the grid approximation.
Theorem D.3. Let δ(ε) denote the tight (ε, δ)-bound for the convolution PLD ω1 ∗ · · · ∗ ωk. The
discretisation error δR(ε)− δ(ε) can be bounded as

δR(ε)− δ(ε) ≤ k∆x
(
P(ω1 + · · ·+ ωk ≥ ε)− δ(ε)

)
. (D.6)

Proof. From the definition of the discrete convolution we see that

(ω1 ∗ · · · ∗ ωk)(s) =
∑

i1,...,ik

a1
i1 · · · a

k
ik
· δs1i1+...+skik

(s)

and that

δ(ε) =

∫ ∞
ε

(1− eε−s) (ω1 ∗ · · · ∗ ωk)(s) ds

=
∑

{i1,...,ik : s1i1
+...+skik

≥ε}

a1
i1 · · · a

k
ik
· (1− eε−s

1
i1
−...−skik )

Then, since for a ≤ b :
exp(b)− exp(a) ≤ exp(b)(b− a),

we have that

δR(ε)− δ(ε) =
∑

{i1,...,ik : s1i1
+...+skik

≥ε}

a1
i1 · · · a

k
ik
· (eε−s

1
i1
−...−skik − e

ε−sR,1i1
−...−sR,kik )

≤
∑

{i1,...,ik : s1i1
+...+skik

≥ε}

a1
i1 · · · a

k
ik
·
(
(sR,1
i1
− s1

i1) + . . .+ (sR,k
ik
− skik)

)
· eε−s

1
i1
−...−skik .

Since
sR,`
i − s`i ≤ ∆x

for all i and `, we have that

δR(ε)− δ(ε) ≤ k∆x
∑

{i1,...,ik : s1i1
+...+skik

≥ε}

a1
i1 · · · a

k
ik
· eε−s

1
i1
−...−skik

= k∆x
( ∑
{i1,...,ik : s1i1

+...+skik
≥ε}

a1
i1 · · · a

k
ik

−
∑

{i1,...,ik : s1i1
+...+skik

≥ε}

a1
i1 · · · a

k
ik
· (1− eε−s

1
i1
−...−skik )

)
= k∆x

(
P(ω1 ∗ · · · ∗ ωk ≥ ε)− δ(ε)

)
.

Remark D.4. Theorem D.3 instantly gives the bound

δR(ε)− δ(ε) ≤ k∆x
(
1− δ(ε)

)
≤ k∆x. (D.7)

On the other hand, the bound (D.6) and the Chernoff bound (D.3) give

δR(ε)− δ(ε) ≤ k∆xP(ω1 + · · ·+ ωk ≥ ε) ≤ k∆x e
∑
i αi(λ)e−λε (D.8)

which holds for any λ > 0. By choosing λ appropriately, this leads to a considerably tighter a priori
bound than (D.7).
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Experimental Illustration. Tables 1 to 3 illustrate the periodisation error bound (D.5) and the
discretisation error bound (D.8). We consider the one-dimensional binomial mechanism (Agarwal
et al., 2018), where a binomially distributed noise Z with parameters n ∈ N and 0 < p < 1 is added
to the output of a query f . Denoting the sensitivity of f by ∆, tight (ε, δ)-bounds are obtained by
considering the PLD ωX/Y given by the distributions fX and fY , where

fX ∼ ∆ + Bin(N, p) and fY ∼ Bin(N, p).

We set N = 1000, p = 0.5, ∆ = 1 and L = 5.0. We compute logarithmic probabilities using the
digamma function and use those to evaluate the values of α+(λ) and α+(λ) required by the error
bounds. The error bound (D.5) is evaluated using λ = L and for the upper bound (D.8) we take the
minimum of the bounds computed with λ ∈ {0.5L, 1.0L, 2.0L, 3.0L, 4.0L}.

n error bound (D.8) δ(ε)
104 6.31 · 10−5 2.59954 · 10−5

105 6.31 · 10−6 2.37864 · 10−5

106 6.31 · 10−7 2.35330 · 10−5

107 6.31 · 10−8 2.35039 · 10−5

Table 2: The discretisation error bound (D.8) for different values of n when ε = 1.0 and k = 20
and the corresponding δ(ε)-upper bound. The table indicates that the magnitude of the error bound
(D.8) is not far from the magnitude of the actual error.

ε error bound (D.8) δ(ε)
0.7 1.32 · 10−6 8.62596 · 10−4

1.1 1.79 · 10−8 5.66127 · 10−6

1.5 3.31 · 10−11 6.03580 · 10−9

1.9 8.36 · 10−15 9.82392 · 10−13

Table 3: Illustration of the discretisation error bound (D.8) for different values of ε when n = 107

and k = 20 and the corresponding tight δ(ε)-upper bound. We see that the bound (D.8) stays small
in relation to δ(ε) as δ decreases.

D.4 UPPER BOUND FOR THE COMPUTATIONAL COMPLEXITY

The results by Murtagh and Vadhan (2018) state that there is no algorithm for computing tight (ε, δ)-
bounds that would have polynomial complexity in k. However, Theorem 1.7 by Murtagh and Vadhan
(2018) states that allowing a small error in the output, the bounds can be evaluated efficiently. More
precisely, given a non-adaptive composition of the mechanismsM1, . . . ,Mk, each mechanismMi

being tightly (εi, δi)-DP, the result states that there exists an algorithm that outputs ε̃(δ) such that

ε(δ) ≤ ε̃(δ) ≤ ε(e−η
2/2 · δ) + η,

where ε(δ) gives a tight bound for the composition, and the algorithm runs in time

O
(
k3 · ε · (1 + ε)

η
log

k2 · ε · (1 + ε)

η

)
, (D.9)

where ε = 1
k

∑
i εi.

Assuming there are m < k distinct mechanisms in the composition, using the error analysis of
Sections D.2 and D.3, we obtain a slightly tighter complexity bound for the evaluation of tight δ as
a function of ε.
Lemma D.5. Consider a non-adaptive composition of the mechanisms M1, . . . ,Mk with corre-
sponding worst-case pairs of distributions fX,i and fY,i, 1 ≤ i ≤ k. Suppose the sequence
M1, . . . ,Mk consists of m distinct mechanisms. Then, it is possible to have an approximation
of δ(ε) with error less than η with number of operations

O
(

2m · k2 · Ck
η

log
k2 · Ck
η

)
,
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where
Ck = max{ 1

k

∑
i

D∞(fX,i||fY,i), 1
k

∑
i

D∞(fY,i||fX,i)},

D∞(fX ||fY ) = sup
aY,i 6=0

log
aX,i
aY,i

and the additional factor in the leading constant is the leading constant of the FFT algorithm.

Proof. We first determine a lower bound for the truncation parameter L in terms of k. Consider the
right-hand-side of the error bound in Theorem D.1. Suppose L ≥ 1 and λ ≥ 1. Then, we have that(

eα
+(λ) + eα

−(λ)
) e−Lλ

1− e−2Lλ
≤
(
eα

+(λ) + eα
−(λ)

)
· e

2
· e−Lλ,

≤ 2 · emax{α−(λ),α+(λ)} · e

2
· e−Lλ,

= emax{α−(λ),α+(λ)}+1e−Lλ,

(D.10)

where α−(λ) and α+(λ) are as given in eq. (D.4).

For each i, the logarithm of the moment-generating function of the PLD can be expressed in terms
of the Rényi divergence (Mironov, 2017):

log
(
E[eλωX/Y,i ]

)
= λ · 1

λ

∑
i

(
aX,i
aY,i

)λ
aX,i

= λ · 1

λ

∑
i

(
aX,i
aY,i

)λ+1

aY,i

= λ ·Dλ+1(fX ||fY ),

whereDλ denotes the Rényi divergence of order λ. From the monotonicity of Rényi divergence (see
Proposition 9, (Mironov, 2017)) it follows that

α+(λ) = λ ·
∑

i
Dλ+1(fX,i||fY,i)

≤ λ ·
∑

i
D∞(fX,i||fY,i),

where
D∞(fX ||fY ) = sup

aY,i 6=0
log

aX,i
aY,i

.

With a similar calculation, we find that

α−(λ) ≤ (λ− 1) ·
∑

i
D∞(fY,i||fX,i).

Thus,

max{α−(λ), α+(λ)} ≤ kλ ·max{ 1
k

∑
i

D∞(fX,i||fY,i), 1
k

∑
i

D∞(fY,i||fX,i)}.

Now we can further bound (D.10) from above as

emax{α−(λ),α+(λ)}+1e−Lλ ≤ ekλ·Ck+1e−Lλ,

where
Ck = max{ 1

k

∑
i

D∞(fX,i||fY,i), 1
k

∑
i

D∞(fY,i||fX,i)}.

Requiring this upper bound to be smaller than a prescribed η > 0, and setting λ = 1, we arrive at
the condition

L ≥ k · Ck + 1 + log
1

η
. (D.11)
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Next, we bound the computational complexity using a bound for the discretisation error. From
Remark D.4 it follows that the discretisation error is bounded as

δR(ε)− δ(ε) ≤ k∆x =
2Lk

n
.

Requiring this discretisation error to be less than η, choosing L according to (D.11) and assuming
k ≥ log 1

η , we see that choosing

n = O
(
k2Ck
η

)
is sufficient for the sum of the error sources to be less than 2η. As we need to compute FFT for m
different PLDs, and since FFT has complexity n log n, we see that with

O
(

2mk2Ck
η

log
k2Ck
η

)
operations it is possible to have an approximation of δ(ε) with error less than η, and that additional
factor in the leading constant is given by the leading constant in the complexity of FFT.

Remark D.6. We see from the proof, that the periodisation error is less than η for

L ≥ log η−1 + max{α−(λ), α+(λ)}+ 1

λ
.

As this is true for all λ ≥ 1, a minimal sufficient value of L can be found via an optimisation
problem w.r.t. λ. Notice also that since α−(λ) and α+(λ) correspond to cumulant generating
functions (CGFs) (Abadi et al., 2016) of the compositions, and since the minimisation

min
λ

log δ−1 + α(λ)

λ

corresponds to the conversion of CGF-values to (ε(δ), δ)-DP values (Abadi et al., 2016), we see
that approximately (assuming λ−1 is small) L has to be chosen as

L ≥ ε(η),

where ε(η) gives (ε, δ)-DP of the composition (M1, . . . ,Mk) at δ = η.
Remark D.7. For simplicity, we have assumed above that the compositions consist of (ε, 0)-DP
mechanisms and that the parameter L is chose sufficiently large so that for all i: |si| ≤ L, where
si = log

aX,i
aY,i

. Then, we can bound the periodisation error using Theorem D.1. In case this does
not hold, finding a priori conditions for the parameters n and L could also be carried out using
Theorem D.2.

D.5 FAST EVALUATION USING THE PLANCHEREL THEOREM

When using Algorithm 2 to approximate δ(ε), we need to evaluate an expression of the form

bk = DF−1
(
F(Da1)�k1 � · · · � F(Dam)�km

)
(D.12)

and the sum
δ̃(ε) =

∑
−L+`∆x>ε

(
1− eε−(−L+`∆x)

)
bk` . (D.13)

When evaluating δ̃(ε) for different numbers of compositions, the inverse transform F−1 is the most
expensive part if the vectors F(Dai) are precomputed as the element-wise multiplications require
O(n) operations. The following lemma shows that the updates of δ̃(ε) can actually be performed
without using the inverse transform F−1, i.e. using O(n) operations.

Lemma D.8. Let δ̃(ε) be given by (D.13) and let bk be defined as in (D.12). Denote wε ∈ Rn such
that

(wε)` = max{1− eε−(−L+`∆x), 0}.
Then, we have that

δ̃(ε) =
1

n
〈F(Dwε),F(Da1)�k1 � · · · � F(Dam)�km〉. (D.14)
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Proof. We see that the sum (D.13) can be written as an inner product: δ̃(ε) = 〈wε, b
k〉. The

Plancherel Theorem states that DFT (as defined in eq. C.1) preserves inner products: for x, y ∈ Rn,

〈x, y〉 =
1

n
〈Fx,Fy〉. (D.15)

Using (D.15) and the fact that D is symmetric, we see that

δ̃(ε) = 〈wε, b
k〉

= 〈wε, DF−1
(
F(Da1)�k1 � · · · � F(Dam)�km

)
〉

= 〈Dwε,F−1
(
F(Da1)�k1 � · · · � F(Dam)�km

)
〉

=
1

n
〈F(Dw),F(Da1)�k1 � · · · � F(Dam)�km〉.

We instantly see that if the vectors F(Dwε) and F(Dai), 1 ≤ i ≤ m, are precomputed, δ̃(ε)
can be updated in O(n) time. We believe this approach can be used for designing efficient online
(ε, δ)-accountants that also give tight guarantees.

Experimental Illustration. Consider computing tight δ(ε)-bound for the subsampled Gaus-
sian mechanism (see Section 5.2), for q = 0.02 and σ = 2.0. We evaluate δ(ε) after k =
100, 200, . . . , 500 compositions at ε = 1.0. Table 4 illustrates the compute time for each update
of δ(ε), using a) a pre-computed vector F(Da), the inverse transform F−1 and the summation
(D.13) and b) pre-computed vectors F(Da)�100 and F(Dwε) and the inner product (D.14).

n t (ms) (D.13) t (ms) (D.14) δ(ε)
5 · 104 5.8 0.18 2.900925 · 10−6

1 · 105 12 0.36 2.851835 · 10−6

1 · 106 140 5.1 2.846942 · 10−6

5 · 106 750 30 2.846941 · 10−6

Table 4: Compute times (in milliseconds) for an update of δ(ε)-bound for different values of n
using the summation (D.13) and the inner product (D.14) and the δ(ε)-upper bound after k = 500
compositions. We see that using Lemma D.8 we can speed up the update more than 20-fold, and that
accurate update of δ(ε) is possible in less than one millisecond. The alternatives (D.13) and (D.14)
give equal results up to machine precision.
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