Published as a conference paper at ICLR 2021

MEMBERSHIP INFERENCE ATTACK ON
GRAPH NEURAL NETWORKS

Iyiola E. Olatunji, Wolfgang Nejdl & Megha Khosla *
L3S Research Center,

Hannover, Germany.

{iyiola,nejdl, khosla}@1l3s.de

ABSTRACT

We focus on how trained Graph Neural Network (GNN) models could leak informa-
tion about the member nodes that they were trained on. We introduce two realistic
inductive settings for carrying out a membership inference (MI) attack on GNNs.
While choosing the simplest possible attack model that utilizes the posteriors of
the trained model, we thoroughly analyze the properties of GNNs which dictate
the differences in their robustness towards MI attack. The surprising and worrying
fact is that the attack is successful even if the target model generalizes well. While
in traditional machine learning models, overfitting is considered the main cause
of such leakage, we show that in GNNs the additional structural information is
the major contributing factor. We support our findings by extensive experiments
on four representative GNN models. On a positive note, we identify properties of
certain models which make them less vulnerable to MI attacks than others.

1 INTRODUCTION

Graph neural networks (GNNs) have gained substantial attention from academia and industry in the
past few years. These models differ from the traditional machine learning models, in that they use
additional relational information among the node instances to make predictions. In fact, the graph
convolution-based model (Kipf & Welling}, 2017) which is the most popular class of GNNs embeds
graph structure into the model itself by computing representation of a node via recursive aggregation
and transformation of feature representations of its neighbors. We focus on exposing the vulnerability
of such models to membership inference (MI) attacks. In particular, we ask whether the trained GNN
model can be used to identify the input instances (nodes) that it was trained on.

To motivate the importance of the problem for graphs, consider the use case shown in Figure [Ta]
Suppose a researcher has a list of patients infected with COVID19. The researcher is interested in
understanding the various factor contributing to the infection. To account for the factors such as their
social activity, she might want to utilize knowledge of friendship/social connection known among the
patients. She then trains a GNN model on the graph induced on the nodes of interest and uses the
trained node representations as additional input for her disease analysis models. A successful MI
attack on the trained model would reveal the list of infected persons even though the model might
have not used any disease-related sensitive information.

MI attack (Shokri et al.| 2017} Salem et al., [2020) is usually modeled as a binary classification task,
where the goal is to distinguish between the farget model’s behavior for the inputs it encountered
during training from the ones which it did not. The inputs to the attack model are the class probabilities
(posteriors) or the confidence values output by the target model for the corresponding data point.
Thus, the adversary only requires a black-box access to the model where she can query the model
on her desired data record and obtain the model predictions (output class probabilities). This is
made possible due to low-cost APIs offering machine learning as a service (MLaaS). The attacker
with access to such a service and her own data can then exploit the patterns in the posterior class
probabilities to identify the training set. Intuitively, the model should be more confident of its
predictions on training data as compared to other inputs.

*Full paper is available on arXiv https://arxiv.org/abs/2101.06570
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(a) An example graph where the induced sub-  (b) Attack methodology for membership inference on GNN
graph (red-colored nodes) was used for train-  models. The training nodes and neighbor information (In-
ing the network. This induced graph corre-  Train) used for training the shadow GNN model are labeled
sponds to the social connections among the ~ as Member. We also query the shadow model with nodes
patients infected with COVID19. The graph  from a test graph (OutTrain) and labeled the predictions as
structure among these nodes might be used to  non-Member. These predictions are used to train the attack
learn useful features of their interactions. The =~ model. The attacker then queries his trained attack model with
adversary then having access to the social net-  posteriors obtained from the target model (target predictions)
work would be interested in discovering the  to infer membership.

infected patients (red nodes).

Figure 1: (a) Motivation of MI attack for graphs and (b) Attack methodology for MI on GNNs

Consequently, much of the success of MI attacks in traditional ML models has been attributed to the
tendency of the model to overfit or memorize the dataset (Zhang et al., 2016). We ask if overfitting in
GNNs is also the main contributing factor for successful membership inference.

To summarize, our key contributions are as follows. (1) We introduce two realistic inductive settings
for carrying out MI attack on GNNs. (2) We perform an extensive experimental study to expose
the risks of data leakage in GNN models. We further attribute the differences between the model’s
robustness towards MI attack to the model architecture, in particular the employed aggregation
mechanisms. (3) Contrary to the popular belief, we show that for GNNs, lack of overfitting does not
guarantee robustness towards privacy attacks. Instead, the connectivity among the instances (unlike
in tabular data) increases the vulnerability of GNN models towards privacy attacks.

2 OUR APPROACH

2.1 PROBLEM DESCRIPTION

Problem Statement. Let a GNN model M be trained using the graph Gy = (Vi, E}). Given a node
v and its L-hop neighborhood, determine if v € V;. Note that even if v was in the training set, the
L-hop neighborhood known to the adversary might not be the same as the one used to train the model

M.

Transductive vs Inductive Training. Graph models can either be trained transductively or induc-
tively. In the transductive setting, the complete graph G is used during training where only a subset of
nodes are labeled. In the inductive setting, only the edge information of the training nodes is present
during training. Therefore, in this work we focus on the inductive setting. We present our arguments
against using transductive setting in Appendix/A.7]

We propose two realistic inductive settings: (i) in the first setting which we call the TSTF (train on
subgraph, test on full) setting, in which the whole graph G is available to the adversary but she is not
aware of the subgraph G; used for training the target model, (ii) in our second setting TSTS (train on
subgraph test on subgraph) setting, the target graph G, is an isolated component of G. The adversary
also does not have full access to G but only to the induced edges among the train/test nodes. From
the perspective of model access, we only assume that the adversary has only black box access to the
target model and access to the dataset drawn from a similar distribution as the target data. We show
that the attacks can be successful even without the knowledge of the target model architecture and
hyperparameter settings.
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2.2 ATTACK METHODOLOGY

We model the problem of MI as a binary classification task where the goal is to determine if a given
node v € V;. We denote our attack model which is a binary classifier by .A. To train A, we first derive
a labeled training dataset with ground truth information. In particular, we build a shadow model
which simulates the behavior of the target model. Illustration of the attack methodology is shown in
Figure For results shown in the main paper, the shadow model uses the same ML algorithm and
has the same hyperparameters as the target model. We later relax these assumptions in Appendix [A.5]

We organize the adversary’s methodology into three phases, shadow model training, attack model
training, and membership inference.

Shadow model training. To train the shadow model, we assume that the adversary has access to
the graph with vertex set Vipqdow that comes from the same underlying distribution as V;. Then the
adversary trains the shadow model using the shadow model’s training split, VSE%Z(;LU C Vishadow- To
replicate the behavior of the target model, we use the output class probabilities by the target model
(when VJ"ain “ig used as input) as the ground truth for training the shadow model. This would result
in querying the target model for each vertex in nga‘fﬁu We later relax the number of queries required
to 0 by directly training the shadow model on ground truth labels. We observe there is no significant
change in attack success rate (c.f. Section[A.4)). We also find that we do not need to know the exact
target model. In fact we show that using GCN as the shadow model irrespective of the actual target
model already results in good attack performance (c.f. Section [A.6).

Attack model training. To construct the attack model we use the trained shadow model to perform
prediction over all nodes in ‘QE%@% and Vs?lgfiow = Vishadow \ VSEZ‘ZQU and obtain the corresponding
output class posterior probabilities. For each node, we take the posteriors as input feature vector for
the attack model and assigns a label 1 if the node is in V274" ‘and 0 if the node is from VG4, .
These assigned labels serves as ground truth data for the attack model. All the generated feature

vectors and labels are used in training the attack model.

Membership inference. To perform the inference attack on whether a given node v € V;, the
adversary queries the target model with v and its known neighborhood to obtain the posteriors. Note
that even if v was part of training data, the adversary would not always have access to the exact
neighborhood structure that was used for training. Then she inputs the posteriors into the attack
model A to obtain the membership prediction.

Our code is available on Github[]
3  RESULTS AND DISCUSSION

Evaluation and Metrics. We compare four popular GNN models: (i) graph convolution network
(GeN)(Kipf & Welling), |2017), (ii) graph attention network (GAT) (Velickovic et al., [2018)) (iii)
simplified graph convolution (SGC) (Wu et al.,[2019) and (iv) GraphSage ( SAGE) (Hamilton et al.}
2017). We ran all experiments for 10 random data splits and report the average performance along
with the standard deviation on five different dataset (CORA, CITESEER, FLICKR, PUBMED and
REDDIT) commonly used as benchmark dataset for evaluating GNN performance. We report AUROC
scores, Precision and Recall for the attack model. Precision measures the fraction of predicted
member nodes that are indeed members of the training dataset while recall measures the fraction
of the training dataset which are correctly inferred as members by the attacker. For the target GNN
models, we report train and test accuracy.

Due to space constraints, we present summarized results in the main paper while moving the detailed
tables to the Appendix.

3.1 COMPARISON AMONG GNN MODELS

In this section, we show that all the four studied GNN models are prone to MI leakage and exhibit
different levels of risks with respect to the attack.

'"https://github.com/iyempissy/rebMIGraph
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Figure 2: Mean AUROC scores of attack model against different GNN models.

Setting TSTF. The AUROC scores for the attack model on all datasets except Reddit are plotted
in Figure@ For the models GCN and SGC, the attack model obtains similar scores. Note that the
difference between SGC and GCN is that SGC does not use a non-linear transformation after the
feature aggregation step. The feature aggregation scheme employed in both the models is exactly the
same.

GAT is the most robust towards the attack. GAT also differs from the models in that it uses a weighted
aggregation mechanism. SAGE employs a mean aggregation over the neighborhood’s features. In
addition, unlike the other models for the aggregation step it samples a fixed number of neighbors
rather than using the complete neighborhood. Though it shows similar results for 3 citation networks,
the attack is less successful for the larger graph FLICKR (when compared to GCN and SGC). We
attribute the reason for such an observation to the induced noise in the neighborhood structures
because of random sampling of neighbors (more details in Appendix [A-3.T) . Obviously, the effect is
more prominent in denser graphs like FLICKR as compared to CORA where the average degree is less
than 2 (see Tables[I]and 2]in Appendix).

Setting TSTS. Unlike in the TSTF setting, the train and test sets in this setting are disconnected.
This implies that any node v € V; and its exact neighborhood used during training is available to
the adversary. We also see a huge reduction in test set performance implying that the model is not
generalising well to the test set. Intuitively it would be much easier to attack in this setting. The
AUROC scores for the corresponding attack are shown in Figure[2b] Precision and recall of the attack
model along with train-test set performance of the target model are shown in Tables 3|4 and[5] We
observe that for CORA and CITESEER the attack has similar success rate as in TSTF setting, for
FLICKR on the other hand, the attack performance degrades. For the larger dataset REDDIT, the
attack is successful for GCN and SGC models with a mean precision of 0.81 and 0.74 (see Table[3))
respectively.

GAT and SAGE shows more robustness with AUROC scores close to 0.5 (implying that the attack
model cannot distinguish between member and non-member nodes better than a random guess) for
datasets: PUBMED, FLICKR, REDDIT even if the generalization error of the target models is high.
In Section [3.2] we further investigate the specific case of overfitting, where we also find that due to
overconfident posteriors for the test set (though for incorrect predictions), the attack model is unable
to distinguish between the member and non-member nodes.

3.1.1 WHICH MODEL IS MORE ROBUST TOWARDS MI ATTACK AND WHY?

To summarize, we found GAT to be most robust towards MI attacks. The reason can be attributed to
the learnable attention weights for different edges. The above fact implies that instead of the original
graph model, a distorted one dictated by supervised signals of class labels is embedded in the model.
This is in contrast with SGC and GCN where the actual graph is embedded with equal edge weights.
Also in SAGE which uses neighborhood sampling before the aggregation operation does not use the
complete information of the graph during training. The effect is more prominent in denser graphs in
which only a small fraction of neighborhood is used during a training epoch.
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3.2 EFFECT OF MODEL OVERFITTING

To investigate the effect of overfitting, we train the models such that they achieve zero training loss or
high generalization error.
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"Normal" refers to the case when all models were for which the maximum posterior is greater than 0.8

trained for a fixed number of epochs. when GNN models overfit on Cora. The statistics are
shown for one random data split.

Figure 3: Effect of overfitting. In figure (a) we observe a surprising effect that attack is less successful
for overfitted models. The reason behind such an effect is explained in (b) which illustrates that the
model overfitted model also make extremely confident albeit incorrect predictions on the test (unseen)
set.

Figure 33 shows the comparison between a "normal" model and overfitted model. The attack
precision and recall of the overfitted model consistently decreases across all models except for GAT.
To understand the reasons behind the above observations, we investigate the posterior distribution of
member and non-member nodes. In Figure 3b} we show the distribution of maximum posterior (i.e.,
the posterior probability corresponding to the predicted class) of overfitted models on train (member)
and test (non-member) set. We observe that in case of overfitting, the GNN model not only make
highly confident predictions for the train set but also for the test set. Most of the nodes whether train
or test set obtain the maximum class probability (or posterior) greater than 0.8 for models GCN and
SGc. For GAT and SAGE, the attack models obtains higher precision given that relatively less number
of non-member nodes obtain high maximum posterior.

4 CONCLUSION

We empirically compare the vulnerability of four GNN models to MI attacks. We show that the
simplest binary classifier based attack model already suffices to launch an attack on GNN models
even if they generalize well. We find that overfitting does not always lead to improvement in the
attack success rate. We find that overfitted GNN models not only make very confident predictions for
the member nodes but also for the non-member nodes (though such predictions might be incorrect).
In such cases the attack model has less distinguishing power given only the black box access to
posteriors.

On a positive note, among the studied models, GAT, is most robust towards MI attack. Also, SAGE
shows robustness for larger datasets. The reasons can be attributed to the fact that they do not embed
the actual training graph in the model. For example in GAT, a weighted aggregation mechanism
is used where the weights are dictated by the supervised task signal. SAGE, instead of using all
neighbors during aggregation, uses only a sample of the neighborhood. We could therefore observe
its robustness towards the attack in larger denser graphs.

ACKNOWLEDGEMENT

This work is in part funded by the Lower Saxony Ministry of Science and Culture under grant number
ZN3491 within the Lower Saxony "Vorab" of the Volkswagen Foundation and supported by the
Center for Digital Innovations (ZDIN), and the Federal Ministry of Education and Research (BMBF),
Germany under the project LeibnizKILabor (grant number 01DD20003).



Published as a conference paper at ICLR 2021

REFERENCES

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In NIPS, 2017.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations (ICLR), 2017.

Ahmed Salem, Apratim Bhattacharya, Michael Backes, Mario Fritz, and Yang Zhang. Updates-leak:
Data set inference and reconstruction attacks in online learning. In 29th {USENIX} Security
Symposium ({USENIX} Security 20), pp. 1291-1308, 2020.

Reza Shokri, Stronati Marco, Song Congzheng, and Shmatikov Vitaly. Membership inference attacks
against machine learning models. In 2017 IEEE Symposium on Security and Privacy (SP), pp.
3-18, 2017.

Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph Attention Networks. International Conference on Learning Representations, 2018.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In Proceedings of the 36th International Conference on
Machine Learning, pp. 6861-6871. PMLR, 2019.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

A APPENDIX

A.1 EFFECT OF NUMBER OF CLASSES
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Figure 4: The effect of number of classes on attack performance. Reddit_S is subset of REDDIT
dataset having 50 nodes per class. REDDIT has 41 classes while FLICKR has 7 classes.

We investigated the influence of the number of available node classes on attack prediction. For all
dataset with 6 or more classes, the attack performs well. However, for PUBMED with 3 classes,
the attack precision and recall is relatively low in both TSTF and TSTS setting across all models.
Figure [4|shows the effect of number of classes on attack precision using 50 nodes in each class of
the REDDIT dataset consisting of 41 classes and FLICKR dataset consisting of 7 classes. The result
points out that GNN models are more vulnerable with increase in number of classes.

A.2 PERFORMANCE IN TSTF SETTING

Tables|[T]and2]report performance of the target and the attack models on CORA, CITESEER, PUBMED
and FLICKR. All target models except SAGE encountered memory issues for the REDDIT in TSTF
setting. Therefore, we only provide results for REDDIT in the TSTS setting.
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Table 1: Performance of different GNN models on CORA and CITESEER dataset in the TSTF setting.

Cora

CiteSeer

Target Model
TRAIN TEST

Attack Model
PRECISION RECALL \TRAIN

Target Model
TEST PRECISION RECALL

Attack Model

GeN 0.81 £0.01 0.84 £0.02
Gar  0.76 £0.01 0.83 £0.02
Scc  0.73+£0.02 0.84+£0.01
SAGE 0.99 £ 0.002 0.76 £ 0.02

0.76 £0.02 0.75+£0.02|0.90 £0.01 0.75£0.01 0.86 +0.02 0.85 £+ 0.02
0.69 £ 0.03 0.68 £0.03|0.87£0.01 0.73£0.02 0.79+0.02 0.78 £ 0.03
0.77+£0.02 0.78 £0.01{0.85£0.01 0.74+0.02 0.87+0.02 0.86 + 0.02
0.78 £0.02 0.77 £ 0.02|0.99 + 0.001 0.67 +0.01 0.86 4+ 0.03 0.85 £ 0.02

Table 2: Performance of different GNN models on PUBMED and FLICKR dataset in the TSTF

setting.

PubMed

Flickr

Target Model
TRAIN TEST

Attack Model
PRECISION RECALL \TRAIN

Target Model
TEST PRECISION RECALL

Attack Model

GeN o 0.74£0.01 0.80£0.01
Gar  0.70£0.01 0.76 £0.02
Scc  0.68+0.01 0.78 £0.01
SAGE 0.82 £ 0.003 0.78 £ 0.02

0.64 +£0.01 0.63+£0.01|/0.37 £0.03 0.18 =0.02 0.90 £+ 0.02 0.89 £ 0.03
0.40£0.17 0.53 £0.04|0.21 £0.02 0.14 £ 0.03 0.61 £0.03 0.58 £ 0.03
0.64 £ 0.01 0.60 +0.05/0.45 £ 0.01 0.10£0.02 0.8540.02 0.85 £ 0.20
0.66 +0.02 0.64 +0.02|0.70 £ 0.04 0.20 £0.01 0.71 £0.01 0.70 £ 0.01

A.3 PERFORMANCE IN TSTS SETTING

Tables [3] [ and [5] provide performance scores of all target and attack models in TSTS setting.

Table 3: Performance of different GNN models on CORA and CITESEER dataset in the TSTS setting.

Cora

CiteSeer

Target Model
TRAIN TEST

Attack Model
PRECISION RECALL \TRAIN

Target Model
TEST PRECISION RECALL

Attack Model

GeN o 0.81 £0.01 0.60 +£0.02
Gar  0.76 £0.01 0.56 £0.02
Scc  0.72+0.01 0.57 £0.02
SAGE 0.99 £ 0.002 0.70 £ 0.02

0.70 £0.02 0.69 £ 0.02|0.90 £0.01 0.61 £0.01 0.83+0.01 0.82 £+ 0.02
0.69+£0.02 0.68 +0.02|/0.87 £0.01 0.62+0.02 0.80=+0.01 0.79 +£0.01
0.68 £0.02 0.68 +0.02|0.85£0.01 0.61 £0.02 0.82+0.02 0.81 £ 0.02
0.83£0.01 0.824+0.01{0.99 £+ 0.003 0.70 £0.02 0.88 +0.01 0.87 £0.02

Table 4: Performance of different GNN models on PUBMED dataset in the TSTS setting.

PubMed

Target Model
TRAIN TEST

Attack Model
PRECISION RECALL

GeN 0.73+£0.01 0.71£0.01
GAT 0.70+0.01 0.67+0.01
Scc  0.68 £0.01 0.66 £0.01
SAGE 0.82 £ 0.003 0.77 £ 0.01

0.58 £ 0.004 0.57 £ 0.002
0.35+0.18 0.52+0.03
0.59+£0.02 0.58 +0.01
0.57£0.01 0.56 £0.01

Table 5: Performance of different GNN models on FLICKR and REDDIT dataset in the TSTS setting.

Flickr

Reddit

Target Model
TRAIN TEST

Attack Model
PRECISION RECALL \TRAIN

Target Model

Attack Model
PRECISION RECALL

GCcN  0.39£0.03 0.20 £ 0.01
GAT 0.21 £0.02 0.17+£0.01
Scc 0.44+£0.02 0.20 £ 0.01
SAGE 0.69 £ 0.05 0.23 £ 0.01

0.53 +0.01 0.52 £0.01|0.42 £ 0.20 0.29 +£0.08 0.81+0.13 0.76 £ 0.06
0.44 £0.13 0.51 £0.01{0.50 £0.15 0.36 £ 0.10 0.60 £ 0.05 0.54 = 0.05
0.55£0.01 0.54£0.01{0.40 £0.16 0.29 £0.05 0.74+0.06 0.68 £0.11
0.58 £0.01 0.56 +0.01|0.70 £ 0.04 0.52+£0.03 0.51 £0.13 0.52 4+ 0.03
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A.3.1 EFFECT OF NEIGHBORHOOD SAMPLING IN SAGE

To further understand the reason for SAGE model’s behavior on smaller dataset, we varied the
number of neighbors sampled at different layers of the network and the batch size. SAGE utilizes
mini-batching technique that contains node on which representation is generated. We used [25,10]
and [5,5] as sampled neighborhood size in layers 1 and 2. For instance, [5,5] implies that on the first
and second layer of the SAGE model, only 5 neighbors of a node are sampled. As shown in Figure
[5a] the attack precision decreases as the number of sampled nodes decreases. This is due to the fact
that the model uses the noisy neighborhood information and is not able to fully encode the graph
structure in the model, this in turn makes the posteriors of neighboring nodes less correlated. Similar
results are obtained for a larger dataset, FLICKR (shown in Figure 5b).

[ Neighborhood Sampling [25,10] [ Neighborhood Sampling [25,10]
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Figure 5: Effect of training batch size and sampled neighbors on attack precision for SAGE model on
(a) CORA and (b) FLICKR dataset.

A.3.2 EFFECT OF INSTANCE CONNECTIVITY

Unlike tabular data, in graphs, the data points (which are the nodes) are linked or connected. Though
our attack model only uses the prediction probabilities and has no knowledge of the graph structure,
the attack pattern reveals the effect of correlated posteriors of neighboring nodes. We will illustrate
the attack pattern with respect to node or instance connectivity using Cora dataset as an example.

model = GCN model = GAT model = SGC model = SAGE
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Figure 6: Joint density plots of true and predicted homophily. The orange contour lines correspond to
correctly predicted nodes (by the attack model) and the blue lines correspond to incorrectly predicted
nodes on CORA dataset in the TSTF setting.

Given the predicted posteriors as input, the attack model labels the node instance as member (label 1)
or non-member (label 0) node. To understand the pattern of label assignments by the attack model
we need the following definition.

Definition (Homophily). For any node u which is either a member or non-member, we define its
homophily as the fraction of its one-hop neighbors which has the same label as u. The neighborhood
of any node is computed using the graph available to the adversary. We call homophily with respect to
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ground truth as the true homophily and with respect to the attack model predictions as the predicted
homophily.

Therefore, a true homophily of 1 means « and all its neighbors in the graph used by the adversary are
members or non-members. Similarly, a predicted homophily of 1 implies that v and its neighbors
were assigned the same label by the attack model. In Figure[6} we plot the joint distribution of true
and predicted homophily of the correctly (orange contour lines) and incorrectly (blue contour lines)
predicted nodes. Our following observations imply the attack model even without using explicitly the
graph structure is greatly influenced by the correlation of prediction probabilities (posteriors) of the
connected nodes and assigns connected nodes the same label.

1. Blue regions on the upper left corner correspond to nodes with O true homophily and high
predicted homophily. Such a node for example if is a member node, then all of its neighbors
are non-members. The attack model makes wrong predictions while matching their predicted
labels to their neighbors. On the other hand, the attack model made the right predictions for
its neighbors.

2. Blue regions on the upper right corner of the plot corresponds to nodes with high true and
predicted homophily. This implies that the attack model assigned wrong label to the node
and its neighbors.

3. Regions along the diagonal as well as above the diagonal correspond to nodes whose
predicted homophily increased.

4. The lower precision of the attack model for GAT (as compared to other models) is evident in
Figure[6] where a larger number of nodes (corresponding concentrated blue regions with high
predicted homophily) and its neighbors are assigned the wrong label. Though the attack
model is not very successful in this case, we still observe that the decisions of the attack
model are correlated for connected nodes.

5. For GCN, SGC and SAGE the attack model obtains similar Precision and Recall. The
corresponding plots in Figure [] show similar patterns where for most of the nodes the
predicted homophily either increases or stays the same. Note that high density of orange
contour lines over the diagonal implies that the attack model has predicted the node as well
its same labelled neighbors correctly.

To summarize, we observe that the attack model’s predictions on a node are highly correlated with its
predictions on its neighbors. As the attack model is agnostic to the graph structure, we conclude that
posterior of neighboring nodes are also correlated which the attack model is able to exploit.

To further support our conclusions from CORA, we additionally investigated a larger dataset, FLICKR.
Figure[7)shows the corresponding homophily plot for FLICKR dataset (for TSTF Setting) in where we
observe clear distinctions among the attack model’s behavior in different models. The attack is most
successful in GCN and least in GAT. We observe that for both the models the predicted homophily
increases for most of the nodes (with dense regions on or above the diagonal) with the difference that
for GAT, the attack is more confused and assigns the wrong label not only to the node but also to
most of its connected neighbors.
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Figure 7: Joint density plot of true and predicted homophily on FLICKR dataset.

Besides, we investigate the sensitivity of attacks to data used to train the shadow model and knowledge
of target model architecture and hyperparameter settings. First, in Section|A.4] we relax the number
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of queries required for imitating the behavior of target model to 0 with the assumption that the training
data for shadow model is drawn from a similar distribution as that of the target model. Second,
we find that as long as we use a graph convolution (message passing) based model architecture for
constructing the shadow model, the assumption about knowledge of exact target model architecture
can be relaxed (c.f. Section[A.6). Finally, we experimented using different sizes of hidden layer and
conclude that knowledge of exactly same hyperparameter settings is not necessary (c.f. Section[A.3)).
We observe that the better the performance of shadow model on the shadow dataset, the better is the
attack success rate.

A.4 RELAXING NUMBER OF QUERIES

We relax the number of queries required to imitate a target model to O by assuming that the adversary
has access to dataset from a similar distribution as the dataset used for the target model. To construct
such datasets we randomly sampled disjoint sets of nodes from the full graph for the target as well as
the shadow model. We then construct the corresponding induced graphs on the node sets to train the
shadow and target models. Note that the shadow model data in this case will not be exactly from the
same distribution as the target graph since our construction would not exactly preserve the structural
characteristics of these graphs e.g. degree distribution. The data used in training the shadow model is
in fact similar but not from the exact same distribution as target model. We found that training the
shadow model using ground truth labels perform similarly to querying the target model in the order
of £ 0.02 standard deviation.

A.5 RELAXING HYPERPARAMETERS ASSUMPTION

In this section, we relax the assumption that the hyperparameters of the target model are known by
varying the number of hidden neurons of the shadow model. The only hyperparameter which can
be varied is the number of neurons in hidden layer. We experiment with three values {256,128, 64}.
With respect to number of layers, it is widely accepted fact that increasing the number of layers in
GNNSs increases oversmoothing, therefore we fix that to the most common setting, i.e., 2.

The corresponding AUROC scores are provided in Figure[§] A general trend is that the larger the
hidden layer size, the better the attack performance. This is expected as increase in size of the hidden
layer increases the model parameters/capacity to store more specific details about the training set. We
also observe that the better the performance of the shadow model on the train set, the better the attack
success rate. Therefore, though we observe some reduction in attack performance for PUBMED when
using 128 or 64 as hidden layer size, an attacker can just choose the hyperparameter which gives the
best train set performance on its shadow dataset.

A.6 RELAXING THE KNOWLEDGE OF TARGET MODEL ASSUMPTION

We further relax the assumption that the attacker knows the architecture of the target model. Specifi-
cally, we used SGC as the shadow model and other GNN models as the target model. Motivated by
the difference between SGC model and GCN model by removing the non-linear activation function
from GCN, we aim to quantify how this difference affects the attack performance. Therefore, we
also used GCN as a shadow model. The mean precision scores corresponding to attacks for different
datasets are presented in Figure[9]

In both TSTF and TSTS, on the CITESEER and CORA dataset, the performance of using different
shadow model is equivalent to using the same model as the target model except for SAGE where
significant drop in performance is observed. However, GCN performs significantly better than SGC
when used as the shadow model by the attacker. On the PUBMED dataset, an interesting observation,
particularly for GAT is that when SGC is used for shadow model, the attack precision and recall
increases more than when GAT (target model) is used as the shadow model. On the FLICKR and
REDDIT dataset, using GCN as the shadow model performs comparable to an adversary knowing
the architecture of the target model in both TSTS and TSTF setting. However, using SGC as shadow
model significantly led to reduced attack precision in the TSTF setting. In fact, better attack precision
is achieved when GCN is used as the shadow model and SAGE is used as the target model on large
networks like REDDIT. Therefore, we conclude that using GCN as the shadow models is sufficient to
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Figure 9: Relaxing the knowledge of target
model. O = Original performance when target
and shadow model have the same architecture.
S = using SGC as shadow model, G = using
GCN as shadow model.

Figure 8: Relaxing hyperparameter assump-
tion. We varied the number of hidden neurons.
The original shadow model was trained with
256 hidden neurons.

launch a successful attack and that the removed non-linear activation function of SGC makes it less
attractive option to use an a "universal" shadow model.

A.7 TRANSDUCTIVE VS INDUCTIVE TRAINING

There are two popular train-test settings for graph based models: transductive and inductive. In
the transductive setting, the complete graph G is used for training where only a subset of nodes
are labelled. Though the GNN model is trained using the supervised loss on labelled nodes, the
unlabelled nodes are also part of the training process. For a given input node instance, say u, a k-layer
GNN model uses as input the k-hop neighborhood of u. This neighborhood might also include a
number of unlabelled nodes whose feature representations were used to learn the representation of
node u. This implies that each node whether labelled or unlabelled contributes to training of the
model. Hence, from privacy perspective, these nodes are also sensitive as they influence the behavior
of the model. Or if one assumes that labels are the sensitive information, in that case a successful
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attack should reveal the labels of unlabelled nodes. That can be easily done just by querying the
target model and does not constitute a MI attack. Hence, we focus on the inductive setting where
only the edge information of the training nodes is present during training. Moreover, models trained
in the inductive setting can be used to classify nodes that were not seen during training.
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