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ABSTRACT

Privacy and security-related concerns are growing as machine learning reaches di-
verse application domains. The data holders want to train with private data while
exploiting accelerators, such as GPUs, that are hosted in the cloud. However,
Cloud systems are vulnerable to the attackers that compromise privacy of data and
integrity of computations. This work presents DarKnight, a framework for large
DNN training while protecting input privacy and computation integrity. DarK-
night relies on cooperative execution between trusted execution environments
(TEE) and accelerators, where the TEE provides privacy and integrity verification,
while accelerators perform the computation heavy linear algebraic operations.

1 INTRODUCTION

The need for protecting input privacy in Deep learning is growing rapidly in many areas. Many
of the data holders are, however, not machine learning experts. Hence, data holders are relying on
machine learning as a service (MLaaS) platforms (Microsoft, 2020; Google, 2020; Amazon, 2020).
These services incorporate ML accelerators such as GPUs for high performance and provide easy
to use ML runtimes to enable data holders to quickly set up their models and train. While these
platforms lower the steep learning curve, they exacerbate the users’ concern regarding data privacy.

This work proposes DarKnight, a framework for accelerating privacy and integrity preserving deep
learning using untrusted accelerators. DarKnight is built on top of an MLaaS platform that uses
unique collaborative computing between the TEE and GPU accelerators to tackle both privacy and
security challenges. The data holder places their data, whether for training or inference, within the
TEE of a cloud server. TEE provides hardware-assisted security for any data and computing per-
formed within the trusted code base. DarKnight uses TEE to encode input data using a customized
matrix masking technique and then uses GPUs to accelerate DNN’s linear computations on the en-
coded data. Linear operations (convolution, matrix multiplication, etc) are significantly faster on a
GPU compared to a TEE-enabled CPU. Therefore, DarKnight distributes these compute-intensive
linear operations to GPUs. DarKnight’s usage of TEEs is limited to protecting the privacy of data
through a customized matrix masking and performing non-linear operations (ReLU, Maxpool).

TEE-GPU collaboration is first used in (Tramer & Boneh, 2018) for inference. However, the method
cannot be used for training as elaborated in their paper. Several prior works on protecting privacy
use cryptography techniques on Finite Fields to provide data privacy. Such approaches limit their
usage to arithmetic on quantized models (Mohassel & Zhang, 2017; Gascón et al., 2017; So et al.,
2019; Wagh et al., 2019; Juvekar et al., 2018). Quantization for deep learning is a challenging task.
DarKnight supports floating point model training and control the information leakage by encoding
parameters. DarKnight can also detect any malicious activities of untrusted GPUs by its computation
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integrity feature. Furthermore, DarKnight can protect privacy and integrity even in the presence of
a subset of colluding GPUs that try to extract information or sabotage the computation.

2 RELATED WORK AND BACKGROUND

Table 1: Comparison of applications and security guarantees of various prior techniques on neural
networks’ security

Method Training Inference DP MPC HE TEE Data Privacy Model Privacy(Client) Model Privacy(Server) Integrity GPU Acceleration Large DNNs
SecureNN (Wagh et al., 2019) • • ◦ • ◦ ◦ • • • ◦ • ◦
Chiron (Hunt et al., 2018) • • ◦ ◦ ◦ • • • • • ◦ ◦
MSP (Hynes et al., 2018) • • ◦ ◦ ◦ • • • • • ◦ ◦
Gazelle (Juvekar et al., 2018) ◦ • ◦ ◦ • ◦ • ◦ ◦ ◦ • •
MiniONN (Liu et al., 2017) ◦ • ◦ • • ◦ • • ◦ ◦ • •
CryptoNets (Gilad-Bachrach et al., 2016) ◦ • ◦ • • ◦ • • ◦ ◦ • •
Slalom (Tramer & Boneh, 2018) ◦ • ◦ ◦ ◦ • • • ◦ • • •
Origami (Narra et al., 2019) ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • •
Shredder (Mireshghallah et al., 2020) ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ • •
Delphi (Mishra et al., 2020) ◦ • ◦ • • • • • ◦ ◦ • •
DarKnight • • ◦ ◦ ◦ • • • ◦ • • •

There are a variety of approaches for protecting input and model privacy and computation integrity
during DNN training and inference. These methods provide different privacy guarantees Mirshghal-
lah et al. (2020). Homomorphic encryption (HE) techniques encrypt input data and then perform
inference directly on encrypted data. They usually provide a high theoretical privacy guarantee on
data leakage, albeit with a significant performance penalty, and hence are rarely used in training
DNNs. Secure multi-party computing (MPC) is another approach, where multiple servers may use
custom data exchange protocols to protect input data. They mostly use secret sharing schemes and
have super-linear overhead as the number of sharers and colluding entities grow. An entirely or-
thogonal approach is to use differential privacy (DP), which protects individual users’ information
through probabilistic guarantees by inserting noise signals to some parts of the computation. The
tradeoff between utility and privacy is a challenge in this line of work. TEEs attracted attention
recently for their privacy and integrity properties Asvadishirehjini et al. (2020); Mo et al. (2020); Ng
et al. (2019). Among TEE-based approaches, Tramer & Boneh (2018) introduced Slalom an infer-
ence framework that uses TEE-GPU collaboration to protect data privacy and integrity. However, as
stated in their work their model was not designed for training DNNs. Instance Hiding is a recently
introduced method Huang et al. (2020). In this work authors combined multiple images from a pri-
vate dataset, merge them with a public image set, and using a sign flip function on pixels as random
noise parameters. This method processes the encoded data without any decoding. However, privacy
guarantees are not theoretically guaranteed, and in Carlini et al. (2020) authors designed an attack
to break the system. In Table 1, we compare some of these approaches based on their privacy and
integrity guarantees, and their applications.

3 DARKNIGHT

System Structure: Our system model for learning is shown in Figure 1. We show K ′ GPU acceler-
ators that participate in linear computations (GPU1,GPUK′ ) on data that is encoded in the TEE. In
this work we use Intel SGX as our TEE.

Threat Model: The threat model on the server-side is a dynamic malicious adversary. Whenever
GPUs receive data from TEE, they may use known techniques to extract information about the
original data or inject faults in the computation. Moreover, a subset of colluding GPUs may try to
extract information by collaborating with each other or inject faults to sabotage the training. In a
system with K ′ accelerator GPUs, DarKnight provides:

Data Privacy: DarKnight provides perfect privacy with IEEE single-precision arithmetic. In
Floating-Point (FP) arithmetic, perfect privacy at a given precision is when the information leak-
age between encoded data and raw data is less than the round off error. Namely, I(X : X ′) <
FP.precision, where I is the mutual information (Cover, 1999; Guo et al., 2020).

Integrity: DarKnight is (K’-1)-secure, namely it can detect any malicious computation even if K’-1
GPUs send erroneous results to TEE.

Collusion Tolerance: DarKnight provide perfect privacy and integrity when M GPUs collude,
where M is a function of K’ and the number of inputs that can be encoded, as described later.
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Figure 1: Forward/backward pass of DarKnight

3.1 DARKNIGHT FLOW

The initial model (W) that a user wants to train
is loaded into the cloud server and is made ac-
cessible to the untrusted GPUs as well. DarK-
night then uses the following steps: (1) A batch
of training/inference input data set is encrypted
by the client using mutually agreed keys with
TEE and sent to the server. (2) TEE decrypts
the images and starts the encoding process. (3)
During the forward/backward pass of training,
each layer requires linear and nonlinear op-
erations. The linear operations are compute-
intensive and will be offloaded to GPUs. DarK-
night’s encoding mechanism is used to seal the
data before sending the data to GPU accelerators. To seal the data, DarKnight uses the notion of
a virtual batch, where K inputs and a random noise are linearly combined to form K + 1 coded
inputs. The size of the virtual batch is limited by the size of the TEE memory that is necessary to
encode K images, typically 4-8 images at a time. (4) The encoded data is offloaded to GPUs for
linear operation. Each GPU receives at most one encoded data (5) GPUs perform linear operations
on different encoded data sets and return the results to TEE in step (6). The TEE decodes the re-
ceived computational outputs using DarKnight’s decoding strategy and then performs any non-linear
operations within the TEE in step (7). This process is repeated both for forward pass and backward
propagation of each layer. In a system with K ′ GPUs and virtual batch size K, DarKnight can
provide data privacy and computational integrity by tolerating up to M colluding GPUs, where
K +M + 1 ≤ K ′.

4 PRIVACY IN TRAINING

for simplicity, we first show how this mechanism works for a system in which GPUs are not collud-
ing and next we expand the encoding to support a system with M colluding GPUs in Appendix B.
For a model with L layers which is being trained with a batch of K inputs, the model parameters
Wl at layer l are updated using the well known SGD process as:

Wnew
l = Wold

l − η × OWl, OWl =
1

K

K∑
i=1

〈δ(i)
l ,x

(i)
l 〉 (1)

Here x(i)
l is the ith input of layer l. η is the learning rate, and δ(i)

l is the gradient of the loss for the
ith point in the training batch, with respect to the output of layer l.

4.1 FORWARD PASS

At a layer l the forward pass, we need to compute yl = 〈Wl , xl〉, where 〈·, ·〉 corresponds to the
bilinear operation at that layer (e.g. matrix product, convolution, etc.). After the linear operation
finishes, an activation function (g(·)) creates the next layer input xl+1 = g(yl). Within this context,
DarKnight first receives a set of K inputs x

(1)
0 , . . . ,x

(K)
0 for a batch training from a client. Our

goal is to perform linear calculations of y
(1)
0 = 〈W0,x

(1)
0 〉, . . . ,y

(K)
0 = 〈W0,x

(K)
0 〉 on the GPUs

without exposing the inputs to the GPU. Note that the subscript 0 in all these variables refers to
the first layer. At this point, we drop the subscript for a more clear notation. Also, we apply x for
the inputs that need to be protected and x̄ for the encoded inputs to visually distinguish different
notations. DarKnight must protect x

(i)
l for each layer of the DNN when the layer’s linear operations

are outsourced to GPUs.

Key Insight: The main idea behind DarKnight’s privacy protection scheme is the fact that the most
computationally intensive operator (such as convolutions) is bilinear. Thus, instead of asking a GPU
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to calculate 〈W,x(i)〉, which exposes the inputs, DarKnight uses matrix masking to linearly com-
bine the inputs and add a random noise to them. Due to the bilinear property, any linear operation
on K masked inputs can be recovered if there are K different linear computations performed.

DarKnight Encoding: Using a customized version of matrix masking (Cox, 1980; 1994; Kim,
1986; Spruill, 1983; Yu et al., 2019), The SGX based enclave within the cloud server first receives
a set of inputs from a data holder. Then the DarKnight scheme creates K + 1 encoding within the
SGX from K data inputs (x(1), . . . ,x(K)), as follows,

x̄(i) = αi,1x
(1) + · · ·+ αi,Kx(K) + αi,(K+1)r (2)

Where i = 1, . . . , (K + 1). The scalars αi,j , and the noise vector r are randomly generated; and the
size of r matches that of x. The scalars αi,j’s are represented by matrix A ∈ R(K+1),(K+1), which
are dynamically generated for each virtual batch and securely stored inside SGX for decoding. As
we prove later, by revealing the values x̄(i)’s to GPUs, we protect the privacy of inputs x(i)’s. At the
next step, the encoded data x̄(i)’s are sent to the GPUs which performs the following computations:
ȳ(i) = 〈W, x̄(i)〉, i = 1, . . . , (K+1). Please note that each GPU only receives one encoded data.
Note-worthily matrix A can be chosen such that its condition number close to one, so that encoding
and decoding algorithm remains numerically stable. Hence, orthogonal matrices serve us the best.

DarKnight Decoding: The K+ 1 outputs ȳ(i) returned from the GPUs must be decoded within the
SGX to extract the original results y(i). These value can be extracted as follows,

Ȳ =
〈
W, [x̄(1), . . . , x̄(K+1)]

〉
=
〈
W, [x(1), . . . ,x(K), r]

〉
︸ ︷︷ ︸

Y

·A ⇒ Y = Ȳ ·A−1 (3)

4.2 BACKWARD PROPAGATION

The decoding process for forward pass exploited the invariant property of model parameter for any
given input such that

〈
W, [x̄(1), . . . , x̄(k+1)]

〉
=
〈
W, [x(1), . . . ,x(k), r]

〉
·A , meaning that a single

W was shared between all the inputs of that layers. However, during the backward propagation
process, we a have different δ(i)

l for each input x
(i)
l . Thus, decoding the 〈δ(i)

l ,x
(i)
l 〉 from obfuscated

inputs 〈δ(i)
l , x̄

(i)
l 〉 is a more challenging approach that requires specific decoding approach.

Key Insight: While backward propagation operates on a batch of inputs, it is not necessary to
compute the 〈δ(i)

l ,x
(i)
l 〉 for each input x(i). Instead, the training process only needs to compute

cumulative parameter updates for the entire batch of inputs. Hence, what is necessary to compute is
the entire OWl which is an average over all updates corresponding to inputs in the batch.

DarKnight Encoding: DarKnight exploits this insight to protect privacy without significantly in-
creasing the encoding and decoding complexity of the blinding process. As shown in Equation equa-
tion 1, there areK inputs on which gradients are computed. DarKnight calculates the overall weight
update in the backward propagation by summing up the following K + 1 equations each of which
are computed on a different GPUs,

OW =

K+1∑
j=1

γjEqj , Eqj =

〈
K∑
i=1

βj,i δ
(i) , x̄(j)

〉
(4)

In the above equations,the encoded input x̄(j) to a layer is the same that was already calculated
during the forward pass using Equation equation 2. Hence, the TEE can simply reuse the forward
pass encoding without having to re-compute. The gradients are multiplied with the βj,i in the GPUs
after which the GPUs compute the bi-linear operation to compute Eqj .

In contrast to inference where W’s are fixed for all the inputs, during training the parameter updates
are with respect to a specific input. Hence, each δ(i)

l ’s corresponds to different x
(i)
l during training.

As such, DarKnight uses a different encoding strategy where the overall parameter updates OW can
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be decoded very efficiently. In particular, DarKnight selects αj,i’s, βj,i’s and γi’s such that

Bᵀ · Γ ·A =


1 0 . . . 0 0
0 1 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 1 0


K×(K+1)

(5)

Assuming batch size is equal to K, the βi,j parameters used for scaling δ values is gathered in the
K + 1 by K matrix, B. αi,j’s are gathered in the K + 1 by K + 1 matrix A, the scalar matrix with
the same size for intermediate features and γi’s form the diagonal of a K + 1 by K + 1 matrix Γ,
that gives us the proper parameters for efficient decoding. Note that the SGX keeps matrix Γ and A
as secret. We provide the details of privacy guarantee in Appendix A.

DarKnight Decoding: Given the constraint imposed on αj,i’s, βj,i’s and γi’s the decoding process
is trivially simple to extract OW. It is easy to see that if the scalars αi,j’s, βi,j’s and γi’s satisfy
the relation equation 5, the decoding process only involves calculating a linear combination of the
values in Equation equation 4.

1

K

K+1∑
j=1

γj Eqj =
1

K

K∑
i=1

〈δ(i)
l ,x

(i)
l 〉 = OWl (6)

Computational Integrity: DarKnight’s encoding scheme can be extended to detect computational
integrity violations by untrusted GPUs. To provide integrity, DarKnight creates one additional linear
combination of inputs (say x̄(K+2)), using the same approach as in Equation equation 2. This
additional equation allows us to verify the accuracy of each result y(i) by computing it redundantly.

5 EXPERIMENTS

DarKnight’s training scheme and the related unique coding requirements are implemented as
an SGX enclave thread on an Intel Coffee Lake server. We used three different DNN
models: VGG16 (Simonyan & Zisserman, 2014), ResNet152 (He et al., 2016) and, Mo-
bileNetV2 (Sandler et al., 2018) and ImageNet (Russakovsky et al., 2015) as our dataset.
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Figure 2: Training Speedup over Baseline

Training Execution Time: Figure 2 demon-
strates the speedup of training using DarKnight
relative to the baseline fully implemented on
SGX with K = 2 images encoded and of-
floaded to 3 GPUs. The results break down
the execution time spent into linear (GPU op-
erations and communication time with GPU)
and non-linear (all other operations) categories.
The results show that DarKnight speeds up the
total linear operation time of VGG16 by 23x
by using the vast GPUs parallelism. The base-
line has to encryption/decrypt data that do not
fit within the SGX memory, such as some of
the large intermediate feature maps in training.
Hence non-linear operations observe 1.89X
speedup in DarKnight. Overall the execution
time is improved by more than 8X with DarKnight. Both ResNet and MobileNet models have
batch normalization layers that are computation-intensive and cannot be offload to GPU accelera-
tors. Even in this worst-case scenario, performance gains of 4.2X and 2.2X are achieved. More
results are provided in Appendix C.
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A PRIVACY GUARANTEE

Darknight provides privacy by matrix masking. Masking keeps all the variables in their floating-
point representations while adding Gaussian noise (or uniform noise) to the vector we would like to
protect.

The information leaked with masking indicates how much information the masked vector possesses
about the raw data (Guo et al., 2020; Matthews et al., 2011). In the other words, it represents the
amount of information the adversary can potentially gain from the raw data, without any assumption
or limitation on adversaries power.

We will first explain a general matrix masking introduced by (Cox, 1980; 1994). Next, we will
explain Darknight privacy, through the notation used in matrix masking. Finally, we will calculate
the information leakage in our masked matrix, as a measure of privacy.

Matrix Masking:
Introduced by (Cox, 1980; 1994), matrix masking scheme can be used for a variety of reasons such
as noise addition, sampling, etc. The general form of BXA + C is used for protecting Matrix X.
In the above formula B, A, and C are called record transformation masks, attribute transformation
masks, and displacing masks, respectively. Any of these matrices can be used for encoding data
based on the data privacy goal. For instance, (Kim, 1986) first added random noise to data and
then transformed it to form a distribution with the desired expected value and variance, by carefully
tuningA andB. (Spruill, 1983) empirically compared different masking schemes including additive
and multiplicative noise. Darknight encoding is a form of matrix masking, with the right choice of
the matrices A, B, and C. A combination of Matrix Masking and coded computing first introduced
in Yu et al. (2019), for secure and robust computation.

DarKnight Encoding:
Following our notation in equation 2, our goal is to protect the vectors xi, by adding a random noise
to each as follows

x̄(i) = αi,1x
(1) + · · ·+ αi,Kx(K) + αi,(K+1)r ,

i = 1, . . . , (K + 1) , (7)

where r is a random noise vector, and αi,j’s are also chosen randomly. Now first, we denote X =

[x(1), . . . ,x(K)] to be the matrix that we would like to protect, and X̄ = [x̄(1), . . . , x̄(K)] to be the
masked matrix that we send to unsecured GPU. In this case, the equation equation 7 can be rewritten
as follows.

X̄ = X ·A1 + r · aT2 (8)

where the matrix A = [αi,j ]i,j ∈ R(K+1)×(K+1) contains some values of αi,j’s, and aT2 =
[α1,(K+1), . . . , α(K+1),(K+1)].

We also prefer to choose a matrix A1, with a condition number close to one, so that our encoding
and decoding algorithm remains numerically stable. For this purpose, orthogonal matrices serve
us the best. In addition to that, the transformation of the matrix whose entities are independent
and identically distributed standard normal variants is invariant under orthogonal transformations.
Therefore, if an orthogonal matrix is used for encoding, the distribution of the raw data and encoded
data remains the same (Kim, 1986), which is preferable in data privacy.

Privacy Guarantee:
In this section, we bound the information that leaks, when using Darknight’s masking approach.
The amount of information leaked by x̄(i)’s about x(j) is the mutual information between these
two variables (Cover, 1999). In this setting, each GPU can observe at most one encoded data, hence
the mutual information is defined by

I(x(j); x̄(i)) = h(x(j))− h(x(j)|x̄(i)) j = 1, . . .K . (9)

Here, h(·) denotes the Shannon entropy function. Note that the information that adversary can
potentially learn about xj by having x̄i is fundamentally bounded by I(x(j); x̄(i)). Next, we will
rigorously bound this information leakage and show how it can be bounded by properties of the
noise.

8
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Theorem 1. Assume that X1, . . . , XK are scalars such that |Xi| ≤ C1 for all i. Suppose αi,j’s
are real non-zero scalars and R denotes a Gaussian random variable with variance σ2. Also X̄ is
defined as

X̄ =

K∑
j=1

αjX
j + α(K+1)R . (10)

Then the information leaked from X̄ about Xj is bounded by

I
(
Xj ; X̄

)
≤ KC2

1 ᾱ
2

2α
¯

2σ2
, j = 1, . . . ,K . (11)

Here ᾱ = maxi,j |αi,j | and α
¯

= mini,j |αi,j |.

Proof. Since αi,j’s are non-zero, we have

I
(
Xj ; X̄

)
= I

(
αjX

j ; X̄
)

(1)
= I

(
αjX

j ;

K∑
l=1

αlX
l + α(K+1)R

)
(2)
= H

(
K∑
l=1

αlX
l + α(K+1)R

)

−H

 K∑
l=1
l 6=j

αlX
l + α(K+1)R


(3)

≤ H

(
K∑
l=1

αlX
l + α(K+1)R

)
−H

(
α(K+1)R

)
= I

(
K∑
l=1

αlX
l;

K∑
l=1

αlX
l + α(K+1)R

)
. (12)

Here, for equality (1), we simply replace X̄i with its definition. (2) is due to the definition of the
mutual information ( I(X;X + Y ) = H(X + Y ) − H(Y )). Finally, inequality (3) holds due to
Lemma 1.
Now, note that since |X l| ≤ C1, we have

Var

(
K∑
l=1

αlX
l

)
=

K∑
l=1

Var
(
αlX

l
)
≤ Kᾱ2C2

1 (13)

Also α(K+1)R is a zero-mean Gaussian random variable with variance α2
(K+1)σ

2. Therefore, using
Lemma 2, we have

I

(
K∑
l=1

αlX
l;

K∑
l=1

αlX
l + α(K+1)R

)
≤

Var
(∑K

l=1 αlX
l
)

2α2
(K+1)σ

2
≤ KC2

1 ᾱ
2

2α
¯

2σ2
(14)

Finally, using equation 12, equation 14, we conclude that

I
(
Xj ; X̄

)
≤ KC2

1 ᾱ
2

2α
¯

2σ2
(15)
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Lemma 1. Suppose that X and Y are two independent random variables. Then we have,

max {H(X), H(Y )} ≤ H(X + Y ) . (16)

Proof. SinceX and Y are independent, we haveH(X+Y |X) = H(Y |X) andH(Y |X) = H(Y ).
Therefore,

H(X + Y ) ≥ H(X + Y |X) = H(Y |X) = H(Y ) . (17)

The same argument shows that H(X + Y ) ≥ H(X), which concludes the proof.

Lemma 2. Assume that Xi ∼ PXi is a random variable, and Ri ∼ N (0, σ2
i ) is a Gaussian random

variable with variance σ2 and mean 0. Also, assume that Xis and Ris are independent. Then we
have,

I(X1, X2, ..., Xn;X1 +R1, X2 +R2, ..., Xk +Rn)

≤
N∑
i=1

1

2
log

(
1 +

Var(Xi)

σ2
i

)
≤

N∑
i=1

Var(Xi)

2σ2
i

, (18)

where Var(Xi) is variance of the random variable Xi.

Please refer to section 9.4 of Cover (1999) for the detailed proof of Lemma equation 2.

Theorem 1 shows that by increasing the power of the noise, one can arbitrarily reduce the leaked
information. Please note that for deep learning applications normalization is common in the pre-
possessing phase. Furthermore, many of the networks such as MobileNet and ResNet variants take
advantage of the batch normalization layers. Hence, the value of C1 in the above theorem is bound
by N (−1

2 ) in case `2 normalization is used (which obviously implies C1 ≤ 1). With a batch size of
K = 2, setting variance of the noise, r, to be σ2 = 4e8, and limiting ᾱ2

α2

¯

< 10, we have the upper

bound of 5e−8 on the leaked information, Because our amount of leakage is less thank the precision
loss(round off error) in IEEE single-precision arithmetic, we achieve perfect privacy; meaning that
the amount of data leakage is less than the accuracy loss due to round off error (Guo et al., 2020).

B COLLUDING GPUS

In this section, we investigate the scenario in which multiple GPUs can collaborate to extract in-
formation from the encoded data. With K ′ GPUs and virtual batch size of K, we can tolerate
M < K ′ −K colluding GPUs without compromising privacy. We show how we can securely out-
source calculating 〈W,x(i)〉, i = 1, . . . ,K, to the GPUs. We first create P = M +K encoded data
vectors, x̄i, i = 1, . . . , P , using M noise vectors R1, . . . ,RM , as follows.

X̄ = XA1 + RA2 , where ,

X̄ =
[
x̄1, . . . , x̄P

]
∈ RN×P ,

X =
[
x1, . . . ,xK

]
∈ RN×K ,

R =
[
R1, . . . ,RM

]
∈ RN×M ,

and , A1 ∈ RK×P , A2 ∈ RM×P . (19)

Here, the matrices A1 and A2 are the encoding coefficient similar to the initial scheme we used for
DarKnight. Theorem 2 provides privacy guarantees for this approach under very mild conditions on
the matrix A2.
Theorem 2. In the encoding scheme described above, assume that the encoding matrix A2 is a
full-rank matrix, such that for every column A

(i)
2 in A2, we have ‖A(i)

2 ‖2 ≥ C. Also assume that
the vectors Ri are independently drawn fromN (0, σ2I).Then the maximum leaked information with
M colluding GPUs is bounded by ∑

i,j

Var(Xi,j)

Cσ2
(20)

10
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Proof. Assume that a subset S ⊆ [1, . . .K ′] of the K ′ GPUs are colluding and |S| = M . Thus,
those GPUs have are given the encoded vectors {x̄i}i∈S . Our goal is to bound the mutual informa-
tion between {x̄i}i∈S and X.

I (X ; XA1(:, S) + RA2(:, S)) . (21)

Here, for a matrix M , M(:, S) denotes a sub-matrix of M , whose columns are chosen from the set
S. Note that the matrix A2(:, S) is full-rank, whose norm of each column is lower-bounded by C.
Therefore,

I (X ; XA1(:, S) + RA2(:, S))

≤ I
(
X ; XA1(:, S) + Cσ2R̄

)
, (22)

where R̄ is a matrix with iid standard Gaussian entries. This is because for a Gaussian matrix M
and a vector v, we have Mv ∼ g‖v‖, where g is a Gaussian vector. Now, simply using Lemma 2
yields

I (X ; XA1(:, S) + RA2(:, S))

≤ I
(
X ; XA1(:, S) + Cσ2R̄

)
≤
∑
i,j

Var(Xi,j)

Cσ2
, (23)

and this concludes the proof.

As you saw in the proof, we needed every sub-matrix A2(:, S) ∈ RM×|S| has linearly independent
columns. That is why it was necessary to have at most M colluding GPUs (|S| ≤M ) when we use
M noise vectors in our scheme. In the other words, when using M noise vectors (which required
M extra equations/GPUS), we can tolerate at most M colluding GPUs.

Now that we took care of inference as described above, we would like to update our training proce-
dure for this new scenario. Same as before, we can calculate the weight updates using the following
equations:

OW =

P∑
j=1

γjEqj , Eqj =

〈
K∑
i=1

βj,i δ
(i) , x̄(j)

〉
(24)

We now define

A =

[
A1

A2

]
,B = [βj,i] ,Γ = Diag(γ1, . . . , γK) (25)

Now, it is easy to show that if

Bᵀ · Γ ·A =


1 0 . . . 0 0 . . . 0
0 1 0 . . . 0 . . . 0
...

. . . . . . . . .
...

. . .
0 . . . 0 1 0 . . . 0


K×K′

(26)

C EXPERIMENTAL SETUP AND RESULTS

DarKnight server consisted of an Intel Coffee Lake E-2174G 3.80GHz processor and Nvidia
GeForce GTX 1080 Ti GPUs. The server has 64 GB RAM and supports Intel Soft Guard Extensions
(SGX). DarKnight’s training scheme and the related unique coding requirements are implemented
as an SGX enclave thread where both the decoding and encoding are performed. For SGX imple-
mentations, we used Intel Deep Neural Network Library (DNNL) for designing the DNN layers
including the Convolution layer, ReLU, MaxPooling, and Eigen library for Dense layer. We used
Keras 2.1.5, Tenseflow 1.8.0, and Python 3.6.8.

We used three different DNN models: VGG16 (Simonyan & Zisserman, 2014), ResNet152 (He
et al., 2016) and, MobileNetV2 (Sandler et al., 2018). We chose MobileNetV2 because it is the
worst-case benchmark for our model as it reduces linear operations considerably (using depth-wise

11
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Figure 3: Training accuracy of DarKnight for CIFAR-100 with (a) VGG16 (b) ResNet152 (c) Mo-
bileNetV2

separable convolution), thereby reducing the need for GPU acceleration. We used ImageNet (Rus-
sakovsky et al., 2015), CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009) as our datasets. All
the parameters, models’ and implementation details, and dataset descriptions are attached in the
supplementary material.

C.1 TRAINING RESULTS

For evaluating training performance, three aspects are examined: accuracy impact, speed up of
training, and maximum information leakage.

Effect of Random Noise on Accuracy: Adding large noise to inputs to encode the data may cause
floating-point rounding errors on GPUs. To study the impact, Fig. 3 shows the training accuracy
when using different noise strengths on VGG16, ResNet152, and MobileNetV2. We use a ran-
dom Gaussian vector with iid entries, N (µ, σ2), as the noise vectors ri’s, where σ2 is the order of
magnitude strength over the typical input and feature map values seen in a model. For instance,
N (5e4, 1e7) means the noise is drawn from a distribution with the mean at 5e4 and variance of 1e7.
Figure 3 (a) shows the accuracy of training for VGG16 on CIFAR-100 dataset. Even with a powerful
noise signal (σ2 = e8), the accuracy loss after epoch 50 is less than 0.001 compared to training on
open data without any privacy controls. Very similar behavior is observed across a wide range of
input datasets and models.

Table 2: Effect of different noise signals on the accuracy of DarKnight inference for different models
on ImageNet

VGG16 ResNet152 MobileNetV1 All Models
Noise Top1 Accuracy Top5 Accuracy Top1 Accuracy Top5 Accuracy Top1 Accuracy Top5 Accuracy MI upper bound

No privacy 64.26 85.01 72.93 90.60 64.96 85.29 –
N (4e3, 1.6e7) 64.23 85.01 72.46 90.47 64.99 85.26 1.25 ∗ 10−6

N (1e4, 2.5e7) 64.25 85.06 72.35 90.23 64.81 85.26 0.8 ∗ 10−6

N (1e4, 1e8) 64.25 85.05 71.87 89.93 64.54 85.15 2 ∗ 10−7

N (0, 4e8) 64.24 85.01 72.24 90.09 64.87 85.19 5 ∗ 10−8

Information Leakage and Mutual Information: Table 2 show accuracy impact of various noise
strengths, on the inference accuracy. For noise strengths that have 7 orders of magnitude higher
variance than the input signal, negligible accuracy losses were observed. When the noise strength
reaches 8 orders of magnitude ResNet152 seems a worst-case Top1 accuracy drop of about 1%.
The last column represents the upper bound of mutual information computed from Theorem 1.
By limiting ᾱ2

α2

¯

< 10 for K = 2 when using N (0, 4e8), we have 5 × 10−8 upper bound on the

information leakage which is less than the roundoff error in IEEE single-precision arithmetic and
hence, perfect privacy is achieved with this precision.
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