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ABSTRACT

Machine learning algorithms have achieved remarkable results and are widely ap-
plied in a variety of domains. These algorithms often rely on sensitive and private
data such as medical and financial records. Therefore, it is vital to draw further at-
tention regarding privacy threats and corresponding defensive techniques applied
to machine learning models. In this paper, we present TenSEAL, an open-source
library for Privacy-Preserving Machine Learning using Homomorphic Encryption
that can be easily integrated within popular machine learning frameworks. We
benchmark our implementation using MNIST and show that an encrypted convo-
lutional neural network can be evaluated in less than a second, using less than half
a megabyte of communication.

1 INTRODUCTION

In recent years, we have witnessed the evolution of machine learning as a service (MLaaS). In a
typical scenario, the users need to send their input to the service provider, which will execute some
algorithms on the data and send back the result.

This new way of making inferences has two critical issues. First, the users may not want to send
their data to the service provider due to privacy concerns. Second, if we do not send users’ data to
the service provider, we cannot give the users the model due to intellectual property concerns. Using
homomorphic encryption, we can follow the same method, except that users’ data will always be
encrypted. This way, neither the input nor the output will be visible to the service provider, and the
evaluation can still happen on this encrypted data.

However, the adoption of homomorphic encryption in machine learning is slow. One reason is that
while the available libraries provide an excellent API for cryptographers, they might be challeng-
ing to use for data scientists. The other blocker is also the cost for evaluation, both in terms of
communication and computation.
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1.1 CONTRIBUTIONS

* We present a flexible open-source library for doing encrypted tensor computation using
homomorphic encryption. The library can directly convert tensors from popular machine
learning frameworks (like PyTorch or Tensorflow) to their encrypted versions.

* We evaluate a convolution neural network on encrypted data in less than a second, with less
than half a megabyte of communication during inference.

For the rest of the paper, we describe the library’s architecture in Section [2] Then, in Section[3] we
detail the algorithms needed for evaluating a convolutional neural network in the encrypted space. In
Section[5] we provide an experimental evaluation of our library, and conclude with some limitations
of our work in section

2 ARCHITECTURE

TenSEAL]is a library that bridges classical machine learning frameworks to homomorphic encryp-
tion capabilities. It manages all the complexities of implementing tensor operations on encrypted
data. TenSEAL relies on the implementation of the CKKS (Cheon et al.|(2017))) scheme in Microsoft;
SEAL. The clients can work with plain or encrypted tensors using one of the supported frontend lan-
guages (C++ or Python). In a client-server scenario, the message exchange is done using [Protocol
buffersl The core API is built around three main components: the context, the plain tensors, and the
encrypted tensors.

2.1 THE TENSEAL CONTEXT

The TenSEAL context is the central component of the library. It generates and stores the necessary
keys required by an encrypted computation. The context generates the secret-key used for decryp-
tion, the public-key used for encryption, the Galois-keys used for rotation, and the relinearization-
keys used for relinearization of ciphertexts. This same object will also handle the thread-pool, which
controls how many jobs should be run in parallel when performing parallelizable operations. The
context can also be configured to do automatic ciphertext relinearization and rescaling during com-
putation.

2.2 THE PLAINTENSOR

The PlainTensor is a class that connects unencrypted tensors to the encrypted implementations.
Figure [2]in the appendix describes the process of converting the tensors.

2.3 ENCRYPTED TENSORS

The EncryptedTensor interface offers an API that needs to be implemented by every tensor exposed
by the library. The interface has a TenSEALContext object, necessary to make any homomorphic
encryption operation. The derived classes expose different tensor flavors, such as:

¢ CKKSVector derives the EncryptedVector interface and can hold a vector of real values by
encrypting them into a single ciphertext.

* CKKSTensor follows the same strategy as [Boemer et al.| (2019b) and holds an N-
dimensional tensor of real values by encrypting them into N-dimensional tensor of cipher-
texts. However, it can batch an axis along with the slots available in every ciphertext, thus
requiring only an (N-1)-dimensional tensor of ciphertexts.

Figures [T] and [2] in the appendix describe how an encrypted tensor is constructed. From this point
onward, we will focus on CKKSVector, as it will be the type used to evaluate the MNIST dataset.

3 METHOD

When building a tensor over a Homomorphic Encryption scheme, there are two significant concerns
to tackle: 1.How to encode the tensor before encryption? and 2.What operations can be performed
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when using a particular encoding? The batching feature of the CKKS scheme allows a N x N
matrix to be encrypted into N ciphertexts, with each row or column as a ciphertext. Another pos-
sibility is to encrypt the whole tensor into a single ciphertext (Jiang et al.|(2018)). Depending on
how we put our plain tensor into ciphertexts, we can perform different operations with varying com-
plexities. The goal is to use the minimum number of ciphertexts and have a maximum depth with
a minimum runtime, thus optimizing memory and computation. Seeking this ideal goal, we found
out that we can use a single ciphertext to encrypt an input image and evaluate it on a convolutional
neural network. This requires a pre-processing step on the client-side to encode the image as a
matrix, composed of convolution windows as rows, then flatten it as a vector via a vertical scan.
In TenSEAL, all these functionalities are implemented around CKKSVector. A CKKS Vector holds
N/2 real values, where N is the polynomial modulus degree. We can perform element-wise oper-
ations with other encrypted or plain vectors (addition, subtraction, and multiplication). We have a
method for computing the power of an encrypted vector (element-wise) that uses an optimal circuit,
thus using a minimum multiplicative depth. Also, because we need a polynomial approximation
for different activation functions, we built a method for evaluating a polynomial with the encrypted
vector as a variable, making sure to use a minimal circuit. Apart from the element-wise operations,
we also need matrix operations to perform machine learning tasks. We implemented a variant of the
encrypted vector-plain matrix multiplication proposed by Halevi & Shoup|(2014)) that can use mul-
tiple threads to run faster. You can check Table [3]in the appendix for a list of supported operations
by the library’s encrypted tensors.

3.1 Dot PrRODUCT

The library provides a similar algorithm for dot product as in|Halevi & Shoup| (2014), but supports
vectors of a size that is not a power of two or does not fill all the slots of a ciphertext. This limitation
in the previous method was due to the right rotation that expects the final element to be the first,
which was not true with regard to the cases we addressed. Our method is limited to a specific
number of dot products if the vector size is not a power of two. However, this limitation is generally
not reached, as the number of multiplication allowed by the scheme might be lower. We do this by
replicating the input vector as many times as possible into ciphertext slots and only left ciphertext
rotations during computation. Our method has the same algorithmic complexity as in Halevi &
Shoup| (2014). We implemented it using CKKS (Cheon et al.|(2017)), for the dot product operation
between an encrypted vector and a plain matrix. Thus, it can be extended to support a dot product
between an encrypted matrix with a plain matrix (matrix multiplication). Figure [3|in the appendix
shows how to perform a dot product between an encrypted vector and a plain matrix.

3.2 2-D CONVOLUTION

TenSEAL also supports evaluating convolutions, with a similar implementation of how modern ma-
chine learning frameworks (e.g., PyTorch) are computing them. We applied the Image Block to
Columns (im2col) (Johnson et al.| (2016)) technique, which turns a convolution layer into a single
matrix multiplication operation. This technique requires encrypted matrix-plain vector multiplica-
tion, which we implemented by performing element-wise multiplication of the matrix transpose with
replicated plain vector. Finally, it rotates and accumulates the result into a single vector. This opera-
tion uses only one multiplication operation and logo (V) rotations and additions, where N represents
the rows’” number in the matrix. Section[A.4]in the appendix explains how the “image block to col-
umn” algorithm can be applied to encrypted inputs. It is important to note that the transformation
happens in plain data, and the transformed input image will be encoded and encrypted in a single
ciphertext. This directly implies that stacking two convolutions is not possible, as reorganizing the
slots of a ciphertext is not trivial.

4 RELATED WORK

In recent years, several research works have made homomorphic encryption schemes practical for
machine learning. |Gilad-Bachrach et al.| (2016) implemented CryptoNets, a neural network for
making inference on encrypted data using the YASHE (Bos et al| (2013)) leveled homomorphic
encryption scheme, which has efficient plain addition and multiplication algorithms, useful for un-
encrypted models. However, the framework requires large batches for achieving a good amortized
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Framework Method  Batchsize Message Size Evaluation Time  Accuracy

CryptoNets HE 8192 595.5 MB 570's 99%
Gazelle HE, MPC 1 0.5 MB 0.03s -
E2DM HE 64 23.93 MB 1.69 s 98.1%

HCNN-GPU HE 8192 - 5.16s 99%

Table 1: Comparing frameworks and their evaluation results on MNIST.

performance, making it less practical for use cases that evaluate a single instance. [Boemer et al.
(2019b) used a similar tensor structure as CryptoNets while implementing different optimization
layers. They used graph level optimizations specific for HE applications, which reduced the multi-
plicative depth needed for evaluating operations such as batch-norm and average pooling. In sub-
sequent work, |Boemer et al.| (2019a) evaluated MobileNetV2 (Sandler et al.| (2018))) and reported
empirical results on HE encrypted inputs, which was way deeper than the previously used models.
Jiang et al.|(2018)) used a smaller neural network and only convolution, linear layers, and the square
activation function. Their framework E2DM made predictions on encrypted data using the CKKS
(Cheon et al.| (2017))) scheme, but compared to previous works, the model’s parameters were also
encrypted. [Juvekar et al.| (2018) proposed the Gazelle framework, which mixes HE with Garbled
Circuits (GC) |Yao| (1986)). They switched between both methods during computation, choosing the
most efficient at a certain point based on the next operation. Using GC makes it possible to compute
the ReLu activation function, compared to previous works (Gilad-Bachrach et al.[(2016); Jiang et al.
(2018); Boemer et al|(2019bga))) which have mainly used polynomial functions. Even though the
protocol achieves relatively fast run-time, it requires interaction between participants, resulting in
high bandwidth usage. Badawi et al.| (2020) used a GPU-accelerated implementation of BFV(Fan
& Vercauteren|(2012)) based on the work from [Badawi et al.[(2018)). Their HCNN of 5 layers could
evaluate in 5 seconds, but could batch more than 8000 images without extra overhead.

All the works are benchmarked using the MNIST dataset (LeCun et al.| (2010)), but with different
hardware configurations. We summarize empirical results reported in each of the corresponding
papers in Table[T]

5 EVALUATION

To evaluate our library and technique, we implemented a neural network composed of: a convolu-
tional layer (4 kernels of 7x7, with a stride of 3x3), a linear layer (input: 256, output: 64), and a
final linear layer (input: 64, output: 10). We used the square activation function after every layer
except for the last. The convolution was done using our image to column implementation, while
the linear layers use the dot product implementation. The accuracy on the plain test-set was 97.7%
in contrast to 97.4% for the encrypted test-set. We used the CKKSVector implementation, which
uses the CKKS scheme. Knowing that we need 6 multiplications to perform the evaluation and a
security level of 128-bits, we set the polynomial modulus degree to 8192, with a coefficient modulus
of 206-bits, and a scale of 21-bits. The evaluation was done on Ubuntu Server 20.04 and Python
3.8, using AWS c4.2xlarge (8 vCPUs) and AWS c4.4xlarge (16 vCPUs) configurations. The mea-
sured durations are the average of 5 rounds of testing, with 10 iterations each. Table [2] contains a
full breakdown for evaluating the neural network over encrypted images sampled from the MNIST
dataset.
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Duration(ms)

Operation Description AWS c4.2xlarge(8 vCPUs)  AWS c4.4xlarge(16 vCPUs)
Key generation Generate the context and the encryption keys 940.01 921.04
Input preparation im2col encoding 9.8 9.8
Convolutional layer evaluation Input 28 x 28, kernel 7 x 7, stride 3, 4 channels 236.9 237.98
First activation(square) Square 256 input values 8.47 8.42
FC1 Fully connected layer with 256 inputs and 64 outputs 1084.65 575.34
Second activation(square) Square 64 input values 4.29 4.2
FC2 Fully connected layer with 64 inputs and 10 outputs 121.36 70.36
Full forward step All the steps above 1456.29 887.06

Table 2: A complete illustration of the encrypted MNIST evaluation, with durations expressed in
milliseconds. We evaluate the methods using two setups: Amazon c4.2xlarge instance (8 vCPUs,
15 GiB memory) and Amazon c4.4xlarge instance (16 vCPUs, 30 GiB memory), to underline how
the library takes advantage of the available parallelism.

The results show that the library makes heavy use of the available parallelism, and it is highly
competitive in terms of network communication, requiring only 427KB of communication to send
the encrypted input and receive the encrypted output. At the same time, TenSEAL does not enforce a
specific batch size for the inference, making it quite practical. The complete operations benchmarks
are open-source, and the results are included in Section [A.5]in the appendix. Table [] shows the
average performance for different arithmetic operations. Table [5]shows the average performance for
matrix multiplications.

6 LIMITATIONS AND CONCLUSION

The encryption part relies on CKKS |Cheon et al.|(2017), which is known to be a leveled homomor-
phic encryption scheme. This means that depending on our parameter selection, there is a limit on
how many multiplications we can perform on encrypted data, and this directly impacts the machine
learning model we can use or its depth. Different machine learning models also use non-linear ac-
tivation functions, which will need to be approximated using polynomials in the case of CKKS. A
recent work |Chillotti et al.| (2020b) have been trying to solve this issue tightly related to machine
learning by using the TFHE scheme |Chillotti et al.| (2020a)), which allows the evaluation of deeper
models, as well as non-linear activation functions.

In conclusion, our results show that it can be practical to do tensorial operations using the CKKS
scheme. Depending on the use case, users can choose advanced tensor operations (like slicing
or broadcasting) or use more computation-communication optimized implementations. TenSEAL
can accommodate both scenarios while offering a smooth transition from the traditional machine
learning frameworks. Finally, we seek to extend the tensor operations catalog and to improve the
overall performance even further.
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A APPENDIX

A.1 ENCRYPTED TENSOR CLASSES

Tensor Tensor Array, lists

PlainTensor<PlainDataType>
. a Tensor data
Shape

Strides

EncryptedTensor interface
Constructor(PlainTensor)

PlainTensor TensealContext

PlainDataType

A

EncryptedVector CKKSTensor

Tensor data

Tensor shape

Tensor strides

1D Ciphertext representation CKKSEncoder

List of Ciphentexts

PlainDataType = double
EncryptedTensor

Encrypted representation BFVVector CKKSVector
TensealContext BatchEncoder CKKSEncoder
PlainDataType = int64 PlainDataType = double

Figure 1: A high-level overview of the en-
crypted tensor construction. The PlainTensor
wraps the tensor representation from popular
frameworks, and it is used as input for the En-

Figure 2: Encrypted tensors relation. The
EncryptedTensor interface is derived into
BFVVector, CKKVector, or CKKSTensor

cryptedTensor interface. classes.

A.2 ENCRYPTED TENSOR OPERATIONS
Operation Description
negate Negate an encrypted tensor
square Compute the square of an encrypted tensor
power Compute the power of an encrypted tensor
add Addition between an encrypted tensor and an encrypted/plain tensor
sub Subtraction between an encrypted tensor and an encrypted/plain tensor
mul Multiplication between an encrypted tensor and an encrypted/plain tensor
dot_product Dot product between an encrypted tensor and an encrypted/plain tensor
polyval Polynomial evaluation with an encrypted tensor as variable

matmul_plain Multiplication between an encrypted tensor and an encrypted/plain matrix
conv2d_im2col Image Block to Columns

Table 3: Supported operations for encrypted tensors

A.3 Dot PRODUCT

Figure [3] shows how an encrypted vector (in gray) can be multiplied with a plain matrix using the
method from Halevi & Shoup|(2014).

A.4 2D CONVOLUTION

A 2D convolution can be performed using a single matrix multiplication, instead of repeating mul-
tiplication on every window. This method is referred to as image block to column convolution,
or image to column convolution. Figure ] shows how a convolution can be performed using this
method. It first reorganizes the input matrix into rows representing convolution windows, then per-
forms a dot product with the flattened kernel.

Applying this technique to an encrypted matrix, which is encrypted into a single ciphertext, is not
trivial, as reorganizing slots is not that simple. We will need to reorganize the matrix as a pre-
processing step before encryption to be ready for convolution. The encrypted-matrix (input image)
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Figure 3: Vector-Matrix Multiplication

with plain-vector (kernel) can be performed with a single element-wise multiplication and a series
of rotations and accumulations. Figure [5]and [6] show the steps for doing that. The first shows how
the encrypted matrix (colored) is encoded and multiplied with the plain kernel. The second step is
to sum different versions of the output that are rotated differently to the left.

1 2 4 5 K1 A
2 3 5 6 K2 B
4 5 7 8 @ K3 @ c
5 6 8 9 K4 D
1 2 4 5 2 3 . 5 6 8 9 .
KL | KL | KI | KI | K2 | K2 | wue | K& | K4 | k4 | K& | ... | uue

Figure 5: Image to column convolution with CKKS - step 1
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Matrix Multiplication

Figure 4: Image to column convolution
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1 2 4 5 2 . 5 6 3 9
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Figure 6: Image to column convolution with CKKS - step 2
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A.5 COMPLETE BENCHMARKS

In this section, we present the full evaluation of TenSEAL’s operations, ran on the CKKSVector
implementation. The benchmarks are measured on an Amazon EC2 c4.2xlarge instance, with 8
vCPUs at 2.9 GHz(Intel Xeon E5-2666 v3 Processor) and 15 GiB memory. They are executed using
Ubuntu Server 20.04 and Python 3.8. The measured durations are the average of 5 rounds of testing,
with 10 iterations each.

Tables |4 and [5| show the average performance for different arithmetic operations.

Operation Tensor shape
’ [256] [1024] [4096] [8192] [16384]

negate 0.07  0.07 0.07 0.13 0.26
square 429 429 4.29 8.49 17.16
polyval 10.55 1046 1051 2132 42.68

Table 4: Duration in milliseconds for unary operations. The CKKS context is created for polynomial
modulus 8192 and coefficient modulus of 200-bits. The polyval benchmark is executed for 2X?2 + X
polynoms.

Tensor shape

Operation [256] [1024] [4096] [8192] [16384]
add 008 008 008 0.6 031
multiply 445 434 443 884 1775
sub 008 008 008 015 03

dot 20.15 2396 28.11 5504 11236
add_plain 08 08 107 213 419
multiply_plain _ 1.75  1.81  2.03 _ 4.02  7.97
sub_plain 0.8 0.86 1.08 2.14 4.21
dot_plain 1737 2136 2563 5114 101.82

Table 5: Duration in milliseconds for binary operations. The CKKS context is created for polyno-
mial modulus 8192 and coefficient modulus of 200-bits. For the ”_plain” operations, the operand is
a PlainTensor of the same shape. For the rest, the operand is an encrypted tensor of the same shape.

12



	Introduction
	Contributions

	Architecture
	The TenSEAL context
	The PlainTensor
	Encrypted tensors

	Method
	Dot Product
	2-D Convolution

	Related work
	Evaluation
	Limitations and conclusion
	Appendix
	Encrypted Tensor classes
	Encrypted Tensor Operations
	Dot Product
	2D Convolution
	Complete benchmarks


