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ABSTRACT

Traditionally, there are two models for implementing differential privacy: local
model and centralized model. Shuffled model is a relatively new model that aims to
provide greater accuracy while preserving privacy by shuffling batches of similar
data. In this paper, we consider the analytic privacy study of a shuffled model for
“f -differential privacy”(f -DP), a new relaxation of traditional (ε, δ)-differential
privacy. We provide a powerful technique to import the existing shuffled model
results proven for the (ε, δ)-DP to f -DP, with which we derive a simple and easy-to-
interpret theorem of privacy amplification by shuffling for f -DP. Furthermore, we
prove that compared with the original shuffled model from Cheu et al. (2019), f -DP
provides a tighter upper bound in terms of the privacy analysis of sum queries. The
approach of f -DP can be applied to broader classes of models to achieve more
accurate privacy analysis

1 INTRODUCTION

Differential privacy Dwork et al. (2006b) Dwork et al. (2006a) Barbaro et al. (2006) Narayanan &
Shmatikov (2008) Homer et al. (2008) has been developed as a valuable standard for measuring and
guaranteeing data privacy. However, it was difficult to be implemented in practice until recently
Abowd (2018) Abadi et al. (2016). Practitioners usually need to face the trade-off between privacy
and accuracy for implementing differential privacy, with two different models, local model and
centralized model.

In local model Erlingsson et al. (2014) Kairouz et al. (2014) Qin et al. (2016), users apply a privacy-
preserving procedure, e.g. by adding noise, to their data before sending them to a server for analysis,
which guarantees privacy without fully trusting the server at the cost of data accuracy with extra
noise. Hence, the local model requires a huge amount of data in order to obtain meaningful results.

As for the centralized model Erlingsson et al. (2019) however, the users’ data are directly sent
to a trusted server, at which private computations are performed among these data using privacy-
preserving techniques. The accuracy can be guaranteed for centralized model, requiring a far less
amount of data to achieve reliable results, while the privacy is at stake when user data are centralized
at a server, which could be lost, attacked or abused if not secured enough.

Shuffling is a relatively new approach for conducting richer and more reliable data analysis while
preserving privacy. Shuffled model, originally sparked by Andrea Bittau et al.Bittau et al. (2017)
entails three components, namely, Encode, Shuffle, and Analyze (ESA) as follows: user data are
firstly encoded locally with two layers of encryption in the encode step. Then in shuffle step, a
shuffler undoes the first layer of encryption and shuffles the data after removing the metadata and
explicitly identifying features that could associate information with a specific user. Afterwards, the
shuffler passes the data to the analyzer, in which the second layer of encryption will be decoded in
order to access and analyze the data as the final step. The key idea behind shuffling is to take a middle
step between local and centralized model so that privacy can be maintained while achieving a higher
level of accuracy. Amin et al. (2020) Dwork et al. (2010a) Balle et al. (2019b) Balle et al. (2019a)
Ghazi et al. (2020) Balle et al. (2020) Ghazi et al. (2019) have built on this concept and proposed
different algorithms with the same basic structure.
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Back to differential privacy framework, despite traditional differential privacy definition ((ε, δ)-DP)
achieves apparent success, it does not tightly handle composition and other properties Murtagh &
Vadhan (2016). As a consequence, the privacy bound is sometimes not tight enough under (ε, δ)-DP.
Recent efforts have been devoted to developing relaxations of differential privacy in order to overcome
such issue. These works include “Rényi Differential Privacy” Mironov (2017) Wang et al. (2019),
“concentrated differential privacy” Dwork & Rothblum (2016) Bun & Steinke (2016), “truncated
concentrated differential privacy” Bun et al. (2018), and most remarkably, “f -differential privacy”
(Gaussian differential privacy) Dong et al. (2019).

f -differential privacy is a new relaxation of differential privacy that can handle this issue Bu et al.
(2019) and has some nice properties Kasiviswanathan et al. (2011). Rather than providing a “di-
vergence” based relaxation of differential privacy, f -DP gives a new definition by allowing the full
trade-off between type I and type II errors in the simple hypothesis testing problem Wasserman &
Zhou (2010) Kairouz et al. (2015) Dwork et al. (2010b):

H0 : the underlying dataset is X

H1 : the underlying dataset is X ′.

In this work, we revisit the privacy analysis of shuffled model for distributed differential privacy
algorithm proposed by Cheu et al. (2019), and analyze the privacy bound of shuffled model under the
framework of f -differential privacy. We prove that compared with the original shuffled model results
from Cheu et al. (2019), f -DP provides a tighter upper bound in terms of the privacy analysis of sum
queries.

In this work, we revisit the privacy analysis of shuffled model for distributed differential privacy
algorithm proposed by Cheu et al. (2019), and analyze the privacy bound of shuffled model under the
framework of f -differential privacy. We prove that compared with the original shuffled model results
from Cheu et al. (2019), f -DP provides a tighter upper bound in terms of the privacy analysis of sum
queries. The remainder of the paper is organized as follows. In section 2, we give some preliminary
background of (ε, δ)-differential privacy and f -differential privacy. In section 3, we provide the main
results of f -DP in shuffled model and compare our results with existing results in shuffled model. In
section 4, we discuss some potential extensions and conclude our paper.

2 PRELIMINARIES

We say two datasets X,X ′ are neighboring if they differ on at most one user’s data, and denote
X ∼ X ′.
Definition 2.1 (Dwork et al. (2006b), Dwork et al. (2006a)). A randomized algorithm M that takes
as input a dataset consisting of individuals is (ε, δ)-differentially private (DP) if for any pair of
datasets X,X ′ that differ in the record of a single individual, and any event E,

P[M(X) ∈ E] ≤ eεP[M(X ′) ∈ E] + δ (1)

When δ = 0, the guarantee is simply called ε-DP.

Consider a rejection rule 0 ≤ φ ≤ 1, with type I and type II error rates defined as

αφ = EP [φ], βφ = 1− EQ[φ].

It motivates the following definition of trade-off function.
Definition 2.2 (trade-off function). For any two probability distributions P and Q on the same space,
define the trade-off function T (P,Q) : [0, 1]→ [0, 1] as

T (P,Q)(α) = inf{βφ : αφ ≤ α}
where the infimum is taken over all (measurable) rejection rule.

Trade-off function motivates the definition of f -differential privacy as follows.
Definition 2.3 (f -differential privacy Dong et al. (2019)). Let f be a trade-off function. A mechanism
M is said to be f -differentially private if

T (M(S),M(S′)) ≥ f
for all neighboring datasets S and S′.
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Gµ-differential privacy is a special type of f -differential privacy by setting f(α) = T (P,Q)(α)
where P = N (0, 1), Q = N (µ, 1).
Definition 2.4 (Gaussian Differential Privacy, Dong et al. (2019)). Denote

Gµ := T (N (0, 1),N (µ, 1))

for µ ≥ 0. And explicit expression for the trade-off function Gµ reads

Gµ(α) = Φ(Φ−1(1− α)− µ)

where Φ denotes the standard normal CDF. Then a mechanism M is said to satisfy µ-Gaussian
Differential Privacy (µ-GDP) if it is Gµ-DP. That is,

T (M(X),M(X ′)) ≥ Gµ
for all neighboring datasets X and X ′.
Corollary 2.5 (Balle & Wang (2018)). A mechanism is µ-GDP if and only if it is (ε, δ(ε))-DP for all
ε ≥ 0, where δ(ε) = Φ(− ε

µ + µ
2 )− eεΦ(− ε

µ −
µ
2 ).

Definition 2.6. The tensor product of two trade-off functions f = T (P,Q) and g = T (P ′, Q′) is
defined as

f ⊗ g := T (P × P ′, Q×Q′)
Theorem 1 (Dong et al. (2019)). LetMi(·, y1, · · · , yi−1) be fi-DP for all y1 ∈ Y1, · · · , yi−1 ∈ Yi−1.
Then the n-fold composed mechanism M : X → Y1 × · · · × Yn is f1 ⊗ · · · ⊗ fn-DP.

Given preliminaries of differential privacy framework and shuffled model, we are now turning into
the privacy analysis.

3 MAIN RESULT

3.1 A PROTOCOL FOR BOOLEAN SUMS: PRIVACY ANALYSIS

The first protocol we are trying to analyze is Boolean sums. The protocol P 0/1
n,λ takes X = {0, 1}

as input domain and aims to reveal the function f(x1, · · · , xn) =
∑n
i=1 xi. And the parameters

n and λ ∈ [0, n] of the protocol control the trade-off between the level of privacy and accuracy as
the following: Through the protocol, a random set of λ users will choose yi randomly while the
remaining n− λ will choose yi to be their input bit xi as their single message/output.

Algorithm 1: Shuffled protocol P 0/1
n,λ for computing the sum of bits

Input: x = (x1, · · · , xn) ∈ {0, 1}n, λ ∈ (0, n).
Output: z ∈ N.
for i ∈ {1, 2, · · · , n} do
b← Ber(λ/n)
if b = 0 then
yi ← xi

else
yi ← Ber(1/2)

end if
end for
Return z ← n

n−λ (
∑n
i=1 yi − λ/2)

Definition 3.1. Define the compound binomial random variable C as the following

C ∼ Bin(s,
1

2
), where s ∼ Bin(n,

λ

n
)

then the probability mass function is

P(C = k) =

n∑
l≥k

(
l

k

)(
n

l

)
(
λ

2n
)l(1− λ

n
)n−l,
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and cumulative distribution function is

Fλ(k) = P(C ≤ k) =

k∑
k′=0

n∑
l≥k′

(
l

k′

)(
n

l

)
(
λ

2n
)l(1− λ

n
)n−l.

Theorem 2. For any λ ∈ (0, n), P 0/1
n,λ is f -differentially private where

f(α) = 1− Fλ(F−1λ (α) + 1),

and Fλ is defined in Definition 3.1 with parameter λ.

By the theorem above, we have the following corollary.

Corollary 3.2. For any α ∈ [0, 1], P 0/1
n,λ is µ-Gaussian -differentially private where

µ ≥ max
0≤α≤1

{
Φ−1(1− α)− Φ−1(1− Fλ(F−1λ (α) + 1))

}
:= µ∗λ,

and Fλ is defined in Definition 3.1 with parameter λ.

We defer the proof of Theorem 2 and Corollary 3.2 to Appendix.

3.2 A PROTOCOL FOR REAL SUMS: PRIVACY ANALYSIS

We will then show how to extend our result from computing Boolean sum to sum of bounded real
numbers. In this case the data domain is real X = [0, 1], while the function f(x) =

∑n
i=1 xi remains

the same. The main idea of the protocol is to encode each input xi to a vector of Boolean values
(bi1, bi2, · · · , bir) in {0, 1}r with expected value xi in average and then apply the similar algorithm
as P 0/1

n,λ at each bit.

Theorem 3. For any λ ∈ (0, n), PR
n,λ,r is f◦r-differentially private where

f(α) = 1− Fλ(F−1λ (α) + 1),

f◦r(α) =

f ⊗ f · · · ⊗ f︸ ︷︷ ︸
r terms

 (α),

and Fλ is defined in Definition 3.1 with parameter λ.

Proof. The proof follows by the combination of Theorem 1 and Theorem 2.

Algorithm 2: An encoder Er(x)

Input: x = (x1, · · · , xn) ∈ [0, 1]n, r ∈ N.
Output: ((b11, b12, · · · , b1r), · · · , (bn1, bn2, · · · , bnr)) with bij ∈ {0, 1}, 1 ≤ i ≤ n, 1 ≤ j ≤ r.
for i ∈ {1, 2, · · · , n} do

Let µ← dxire and p← xir − µ+ 1
for j ∈ {1, 2, · · · , r} do

bij =


1 j < µ

Ber(p) j = µ

0 j > µ
end for

end for
Return ((b11, b12, · · · , b1r), · · · , (bn1, bn2, · · · , bnr))

Corollary 3.3. For any α ∈ [0, 1], PR
n,λ,r is µ-Gaussian differentially private where µ ≥

√
rµ∗λ,

µ∗λ := max
0≤α≤1

{
Φ−1(1− α)− Φ−1(1− Fλ(F−1λ (α) + 1))

}
,

and Fλ is defined in Definition 3.1 with parameter λ.

The proof of Corollary 3.3 is the same as Corollary 3.2. We compare the privacy results from our
paper and Cheu et al. (2019) to demonstrate the power of f -DP in Figure 1.
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Algorithm 3: Protocol PR
n,λ,r = (RR

λ,r, S,A
R
λ,r)

Input: x = (x1, · · · , xn) ∈ [0, 1]n, r ∈ N, λ ∈ (0, n).
Output: z ∈ [0, n].
Let ((b11, b12, · · · , b1r), · · · , (bn1, bn2, · · · , bnr))← Er(x)
for i ∈ {1, 2, · · · , n} do

for j ∈ {1, 2, · · · , r} do
l← Ber(λ/n)
if l = 0 then
yij ← bij

else
yij ← Ber(1/2)

end if
end for

end for
Return z ← n

r(n−λ) (
∑r
j=1

∑n
i=1 yij −

λr
2 )
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Figure 1: (a) Privacy analysis of P 0/1
n,λ . The Type I error v.s. Type II error plot of the results are that

derived from Cheu et al. (2019) and our paper, setting n = 100, λ = 58. The perfect privacy curve
is β = 1− α, which implies that M(X) and M(X ′) are indistinguishable. For the details, refer to
Dong et al. (2019). Our curve is much closer to β = 1− α than previous result. (b) Same analysis of
PR
n,λ,r. By converting our result to (ε, δ)-DP using Corollary 2.5, we observe that our result is tighter

than previous result since our curve is way below the curve derived from Cheu et al. (2019). (c) (d)
Privacy analysis of PR

n,λ,r, setting r = 10, n = 100, λ = 58. Regular (ε, δ)-DP composition results
the loss of privacy as shown while GDP composition is tight.

4 CONCLUSION AND DISCUSSION

In this work, we introduce the shuffled model as a composition of Encode, Shuffled and Analyzer
protocols under the framework of f -DP, which can tightly handle composition compared to (ε, δ)-DP.
Thanks to the tightness of composition in f -DP, we can take the privacy analysis of shuffled model to
the next level. As two simple applications, we provide privacy analysis of protocols for boolean sums
and real sums in shuffled model, in which we derive analytical bounds for both type I and type II
errors. Compared with the applications under traditional DP, the privacy bound is much tighter in
terms of (ε, δ) and error bound is nearly perfect under f -DP. As we can see, the improvement can be
tremendous so that we’d suggest f -DP can be implemented to broader classes of shuffle models for a
more accurate privacy analysis.
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Appendix

A NEYMAN-PEARSON LEMMA

Suppose we are performing a hypothesis test between two simple hypothesis H0 : θ = θ0, H1 : θ =
θ1 using the likelihood ratio test with likelihood-ratio threshold η, which rejects H0 in favour of H1

at a significant level of

α = P(Λ(x) < η|H0)

where

Λ(x) =
L(θ0|x)

L(θ1|x)

and L is the likelihood function. Then, the Neyman-Pearson lemma states that the likelihood ratio
Λ(x) is the most powerful test at significant level α.

B PROOF OF THEOREM 1

To analyze P 0/1
n,λ , we need Cλ and CH as intermediate steps to do the analysis. And we will prove

Theorem 2 by using the following claims.

Algorithm 4: Cλ(x1, · · · , xn)

Input: x = (x1, · · · , xn) ∈ {0, 1}n, λ ∈ (0, n).
Output: y ∈ N.
Sample s← Bin(n, λ/n)
DefineHs = {H ⊂ [n] : |H| = s} and choose H← Hs uniformly at random
Return y ←

∑
i/∈H xi +Bin(s, 1/2)

Algorithm 5: CH(x1, · · · , xn)

Input: x = (x1, · · · , xn) ∈ {0, 1}n, H ⊂ {1, 2, · · · , n}.
Output: yH ∈ N.
B← Bin(|H|, 1/2)
Return yH ←

∑
i/∈H xi + B

Claim B.1 (Cheu et al. (2019)). For every n ∈ N, x ∈ {0, 1}n, and every r ∈ {0, 1, 2, · · · , n},

P[Cλ(X) = r] = P[

n∑
i=1

Rn,λ(xi) = r]

where Rn,λ(x) is the local randomizer which takes input x, output y = x if b = 0, b ∼ Ber(λ/n) or
output y = k, k ∼ Ber(1/2) if b = 1.

Proof. Fix any r ∈ {0, 1, 2, · · · , n}.

P (Cλ(X) = r) =
∑
H⊂[n]

P (Cλ(X) = r ∩H)

=
∑
H⊂[n]

P

(∑
i/∈H

xi +Bin(|H|, 1/2) = r

)
(
λ

n
)|H|(1− λ

n
)n−|H|

=
∑
H⊂[n]

P

(∑
i/∈H

xi +
∑
i∈H

Ber(1/2) = r

)
(
λ

n
)|H|(1− λ

n
)n−|H|

8



ICLR 2021 - Workshop on Distributed and Private Machine Learning (DPML)

Denote G be the random set of people for whom bi = 1 in P 0/1
n,λ . Then

P

(
n∑
i=1

Rn,λ(xi) = r

)
=
∑
K⊂[n]

(∑
i

Rn,λ(xi) = r ∩G = K

)

=
∑
K⊂[n]

(∑
i/∈K

xi +
∑
i/∈K

Ber(1/2) = r

)
(
λ

n
)|K|(1− λ

n
)n−|G|

= P (Cλ(X) = r)

which completes the proof.

Claim B.2 (Cheu et al. (2019)). If Cλ is f -differentially private, then P 0/1
n,λ is f -differentially private.

Before we start our proof, we need to state the lemma below which we will use later.
Lemma B.3 (Post-Processing (f -DP)). If M is f -differentially private, then for every A, A ◦M is
f -differentially private.

Proof of Claim B.2. Fix any number of users n. Consider the randomized algorithm A :
{0, 1, 2, · · · , n} → {0, 1}n that takes a number r and outputs a uniformly random string z that
has r ones. If Cλ is f -DP, then A ◦ Cλ is f -DP by the post-processing. Now we can complete our
proof by showing (A ◦ Cλ)(X) has the same distribution as S(Rλ(x1), · · · , Rλ(xn)). Fix some
vector Z ∈ {0, 1}n with sum r

P (A(Cλ(X)) = Z) = P (A(r) = Z)P (Cλ(X) = r)

=

(
n

r

)−1
P (Cλ(X) = r)

=

(
n

r

)−1 ∑
K∈{0,1}n:|K|=r

P (Rn,λ(X) = K)

= P (S(Rn,λ(X)) = Z)

Therefore, if Cλ is f -DP, so does P 0/1
n,λ .

Claim B.4. For any α ∈ [0, 1], CH is f -differential privacy where

f(α) = 1− F (F−1(α) + 1),

and F is the cumulative density function of binomial distribution with parameters |H| and 1/2.

Proof. To prove this claim, we need to apply Neyman-Pearson here. We first compute the likelihood
ratio.

P(M(X) = r)

P(M(X ′) = r)
=

P(B +
∑
i/∈H xi = r)

P(B +
∑
i/∈H x

′
i = r)

Since xj = 0, x′j = 1 and j /∈ H , we have
∑
i/∈H xi =

∑
i/∈H x

′
i − 1. Hence

P(B +
∑
i/∈H xi = r)

P(B +
∑
i/∈H x

′
i = r)

=
P(B +

∑
i/∈H xi = r)

P(B +
∑
i/∈H xi + 1 = r)

=
P(B = r −

∑
i/∈H xi)

P(B = r −
∑
i/∈H xi − 1)

=
P(B = kr + 1)

P(B = kr)

where we denote kr = r −
∑
i/∈H x

′
i. Since B ∼ Bin(|H|, 1/2), we obtain

P(B = kr + 1)

P(B = kr)
=
|H| − kr
kr + 1

=
|H| − r +

∑
i/∈H x

′
i

r −
∑
i/∈H x

′
i + 1

=
|H| − r +

∑
i/∈H xi + 1

r −
∑
i/∈H xi

.
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Now, we are able to compute type I error and type II error by Neyman-Pearson Lemma. For type I
error,

α(t) = Pr∼B+
∑
i/∈H x′

i

( |H| − r +
∑
i/∈H x

′
i

r −
∑
i/∈H x

′
i + 1

> t

)
= Pr∼B+

∑
i/∈H x′

i

(
|H| − r +

∑
i/∈H

x′i > t(r −
∑
i/∈H

x′i + 1)

)

= Pr∼B+
∑
i/∈H x′

i

( |H|+ (t+ 1)
∑
i/∈H x

′
i − t

t+ 1
> r

)
= Pr′∼B

(
r′ <

|H| − t
t+ 1

)
here, we denote r′ = r −

∑
i/∈H x

′
i. Hence,

α(t) = F (
|H| − t
t+ 1

)

where F is the cumulative density function of binomial distribution with parameters |H| and 1/2.
For type II error,

β(t) = Pr∼B+
∑
i/∈H xi

( |H| − r +
∑
i/∈H xi + 1

r −
∑
i/∈H xi

< t

)
= Pr∼B+

∑
i/∈H xi

(
|H| − r +

∑
i/∈H

xi + 1 < t(r −
∑
i/∈H

xi)

)

= Pr∼B+
∑
i/∈H xi

( |H|+ (t+ 1)
∑
i/∈H xi + 1

t+ 1
< r

)
= Pc∼B

(
c >
|H|+ 1

t+ 1

)
where we denote c = r −

∑
i/∈H xi. Hence

β(t) = 1− F (
|H|+ 1

t+ 1
),

Now, we need to express β(t) in terms of α(t), i.e. β = f(α). Because

F−1(α) =
|H| − t
t+ 1

we have

t =
|H| − F−1(α)

F−1(α) + 1
.

Plug into β(t), we obtain

β = 1− F (F−1(α) + 1)

Therefore, we have

T (M(X),M(X ′))(α) ≥ f(α) = 1− F (F−1(α) + 1)

Claim B.5. For any α ∈ [0, 1], CH is µ-Gaussian differential privacy where

µ ≥ max
0≤α≤1

{
Φ−1(1− α)− Φ−1(1− F (F−1(α) + 1))

}
,

and F is the cumulative density function of binomial distribution with parameters |H| and 1/2.

10
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Proof. This result directly comes from the definition of Gaussian differential privacy.

T (M(X),M(X ′))(α) ≥ f(α) ≥ Φ(Φ−1(1− α)− µ)

Then, we have

1− F (F−1(α) + 1) ≥ Φ(Φ−1(1− α)− µ).

Therefore,

µ ≥ max
0≤α≤1

{
Φ−1(1− α)− Φ−1(1− F (F−1(α) + 1))

}
.

Notice that CH is a simplified version of Cλ by directly taking batch H as input. As a result, the
privacy analysis of CH will serve as a basic framework followed by privacy analysis of Cλ.

Claim B.6. For any α ∈ [0, 1], Cλ is f -differential privacy where

f(α) = 1− Fλ(F−1λ (α) + 1),

and Fλ is defined in Definition 3.1 with parameter λ.

Proof. Similar to Claim B.4, we need to apply Neyman-Pearson here. We first compute the likelihood
ratio.

P(M(X) = r)

P(M(X ′) = r)
=

P(C +
∑
i/∈H xi = r)

P(C +
∑
i/∈H x′i = r)

Since xj = 0, x′j = 1 and j /∈ H, we have
∑
i/∈H xi =

∑
i/∈H x′i − 1. Hence

P(C +
∑
i/∈H xi = r)

P(C +
∑
i/∈H x′i = r)

=
P(C +

∑
i/∈H xi = r)

P(C +
∑
i/∈H xi + 1 = r)

=
P(C = r −

∑
i/∈H xi)

P(C = r −
∑
i/∈H xi − 1)

=
P(C = kr + 1)

P(C = kr)

where we denote kr = r −
∑
i/∈H x

′
i. Since C follows the compound binomial distribution defined

in Definition 3.1 , we obtain

η =
P(C = kr + 1)

P(C = kr)

=

∑n
l≥kr+1

(
l

kr+1

)(
n
l

)
( λ2n )l(1− λ

n )n−l∑n
l≥kr

(
l
kr

)(
n
l

)
( λ2n )l(1− λ

n )n−l

=

∑n
l≥kr

(
l

kr+1

)(
n
l

)
( λ2n )l(1− λ

n )n−l∑n
l≥kr

(
l
kr

)(
n
l

)
( λ2n )l(1− λ

n )n−l

Notice that
(
l
k

)
= 0 for l < k. Since for kr ≤ l ≤ n,(

l
kr+1

)(
n
l

)
( λ2n )l(1− λ

n )n−l(
l
kr

)(
n
l

)
( λ2n )l(1− λ

n )n−l
=
l − kr
kr + 1

If l−kr
kr+1 < t for every kr ≤ l ≤ n, then η < t. If l−kr

kr+1 > t, then η > t. Therefore, {r : l−kr
kr+1 <

t} ⊂ {r : η < t} and {r : l−kr
kr+1 > t} ⊂ {r : η > t}. As a consequence, the probability measure

of {r : η < t} or {r : η > t} is greater than or equal to probability measure of {r : l−kr
kr+1 < t} or

{r : l−kr
kr+1 > t}.

11



ICLR 2021 - Workshop on Distributed and Private Machine Learning (DPML)

Now, we are able to bound type I error and type II error by Neyman-Pearson Lemma. For type I error,

α(t) = Pr∼C+
∑
i/∈H x′

i
(η > t)

≥
n∏

l≥kr

Pr∼C+
∑
i/∈H x′

i

(
l − r +

∑
i/∈H x′i

r −
∑
i/∈H x′i + 1

> t

)

=

n∏
l≥kr

Pr∼C+
∑
i/∈H x′

i

(
l − r +

∑
i/∈H

x′i > t(r −
∑
i/∈H

x′i + 1)

)

=

n∏
l≥kr

Pr∼C+
∑
i/∈H x′

i

(
l + (t+ 1)

∑
i/∈H x′i − t

t+ 1
> r

)

=

n∏
l≥kr

Pr′∼C
(
r′ <

l − t
t+ 1

)
here, we denote r′ = r −

∑
i/∈H x′i. Hence,

α(t) ≥
n∏

l≥kr

Fλ(
l − t
t+ 1

)

For type II error,

β(t) = Pr∼C+
∑
i/∈H xi (η < t)

≥
n∏

l≥kr

Pr∼C+
∑
i/∈H xi

(
l − r +

∑
i/∈H xi + 1

r −
∑
i/∈H xi

< t

)

=

n∏
l≥kr

Pr∼C+
∑
i/∈H xi

(
l − r +

∑
i/∈H

xi + 1 < t(r −
∑
i/∈H

xi)

)

=

n∏
l≥kr

Pr∼C+
∑
i/∈H xi

(
l + (t+ 1)

∑
i/∈H xi + 1

t+ 1
< r

)

=

n∏
l≥kr

Pc∼C
(
c >

l + 1

t+ 1

)
where we denote c = r −

∑
i/∈H xi. Hence

β(t) ≥
n∏

l≥kr

(
1− Fλ(

l + 1

t+ 1
)

)
,

Since 0 ≤ kr ≤ n and we are seeking for the ”best” function β = f(α) such that it is most close to
β = 1− α, we can take kr = n (otherwise, the curve will close to axis). Now, we need to express
β(t) in terms of α(t), i.e. β = f(α). Because

F−1λ (α) =
n− t
t+ 1

we have

t =
n− F−1λ (α)

F−1λ (α) + 1
.

Plug into β(t), we obtain

β = 1− Fλ(F−1λ (α) + 1)

Therefore, we have

T (M(X),M(X ′))(α) ≥ f(α) = 1− Fλ(F−1λ (α) + 1)

12
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Proof of Theorem 2. Because Cλ and P 0/1
n,λ share the same privacy guarantees, we can conclude our

proof by using Claim B.6 and Claim B.2.

Proof of Corollary 3.2. The same proof as Claim B.5.

C (ε, δ)-DP AND f -DP OF CH

We first state the claim from Cheu et al. (2019).
Claim C.1 (Cheu et al. (2019)). For any δ > 0 and any H ⊂ [n] such that |H| > 8 log 4

δ , CH is
fε, δ2

differentially private for

ε = ln

1 +

√
32 log 4

δ

|H|

 <

√
32 log 4

δ

|H|

By using our Theorem 3, we are able to do the following comparison.
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Figure 2: (a) Privacy analysis of CH . The Type I error v.s. Type II error plot of the results are that
derived from Cheu et al. (2019) and our paper, setting |H| = 50, n = 100. The perfect privacy curve
is β = 1− α, which implies that M(X) and M(X ′) are indistinguishable. For the details, refer to
Dong et al. (2019). Our curve is much closer to β = 1− α than previous result. (b) Same analysis of
CH . By converting our result to (ε, δ)-DP, we observe that our result is tighter than previous result
since our curve is way below the curve derived from Cheu et al. (2019).
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