
Published as a conference paper at ICLR 2021

SMOOTHNESS MATRICES BEAT SMOOTHNESS CON-
STANTS: BETTER COMMUNICATION COMPRESSION
TECHNIQUES FOR DISTRIBUTED OPTIMIZATION

Mher Safaryan
KAUST
Thuwal, Saudi Arabia
mher.safaryan.1@kaust.edu.sa

Filip Hanzely
TTIC
Chicago, USA
filip.hanzely@kaust.edu.sa

Peter Richtárik
KAUST
Thuwal, Saudi Arabia
peter.richtarik@gmail.com

ABSTRACT

Large scale distributed optimization has become the default tool for the training
of supervised machine learning models with a large number of parameters and
training data. Recent advancements in the field provide several mechanisms for
speeding up the training, including compressed communication, variance reduction
and acceleration. However, none of these methods is capable of exploiting the
inherently rich data-dependent smoothness structure of the local losses beyond stan-
dard smoothness constants. In this paper, we argue that when training supervised
models, smoothness matrices—information-rich generalizations of the ubiquitous
smoothness constants—can and should be exploited for further dramatic gains, both
in theory and practice. In order to further alleviate the communication burden inher-
ent in distributed optimization, we propose a novel communication sparsification
strategy that can take full advantage of the smoothness matrices associated with
local losses. To showcase the power of this tool, we describe how our sparsification
technique can be adapted to three distributed optimization algorithms—DCGD
(Khirirat et al., 2018), DIANA (Mishchenko et al., 2019) and ADIANA (Li et al.,
2020)—yielding significant savings in terms of communication complexity. The
new methods always outperform the baselines, often dramatically so.

1 INTRODUCTION

In the big data regime, the data is partitioned among many parallel machines, which then cooperatively
train a single global model, usually orchestrated by a central server. Distributed training is cast as the
distributed optimization problem

min
x∈Rd

f(x) +R(x), f(x) := 1
n

n∑
i=1

fi(x), (1)

where d is the number of parameters of model x ∈ Rd, n is the number of machines participating
in the training, fi(x) is the loss associated with the data stored on machine i ∈ [n] := {1, 2, . . . , n},
f(x) is the empirical loss, and R(x) is a regularizer. Ample research over the past two decades
has shown that first-order methods are highly scalable and as a result are the methods of choice for
distributed optimization problems (Liu & Zhang, 2020). In particular, a substantial amount of work
has been devoted to speeding up the training process by developing efficient methods empowered
with techniques such as compressed communication, variance reduction and acceleration.

Compressed communication. In distributed training, compute nodes have to communicate with
each other, often via a central server, in order to be able to maintain consensus and jointly train a
single global model. However, communication of the information pertaining to local progress, which

1

Published as a conference paper at ICLR 2021

is typically contained in gradient(s) distilled from local data, is almost invariably the key bottleneck
in distributed training systems (Xu et al., 2020). One popular way to address this issue is to reduce
the number of bits encoding the vector/tensor to be transferred via the help of a lossy compression
operator. Numerous unbiased gradient compression operators have been proposed for this purpose,
including sparsifications (Wang et al., 2018; Mishchenko et al., 2020; Alistarh et al., 2018) and
quantizations (Alistarh et al., 2017; Zhang et al., 2017; Horváth et al., 2019a; Wu et al., 2018).

Variance reduction. A marked issue that needs to be addressed by successful distributed optimization
methods has to do with the (potential) “dissimilarity” of the local loss functions f1, . . . , fn, which
in turn is due to the heterogeneity of the training data defining these functions. The higher the
dissimilarity, the harder it is for the devices to find the minimizer of (1). This issue exists even in
the unregularized case (R ≡ 0). Indeed, while in this case 1

n

∑
i∇fi(x∗) = 0 if x∗ is a minimizer

of f , this does not mean that the individual gradients, ∇f1(x∗), . . . ,∇fn(x∗), are all zero. This
issue is exacerbated further by the extra noise coming from gradient compression. Indeed, this noise
prevents methods such as Distributed Compressed Gradient Descent (DCGD) (Khirirat et al., 2018)
from converging to x∗ with a constant learning rate even in the interpolation regime characterized
by the identities ∇fi(x∗) = 0 for all i. Fortunately, these issues can be resolved via carefully
designed variance reduction techniques (Gower et al., 2020). In particular, the first variance reduction
mechanism for removing the variance coming from compression operators in distributed training
is due to Mishchenko et al. (2019), embodied in their DIANA algorithm. The method was initially
analyzed for ternary quantization only (Wen et al., 2017), and later generalized to handle a general
class of unbiased compression operators (Horváth et al., 2019b; Gorbunov et al., 2020b).

Acceleration. To speed up distributed training even further, it is often possible to employ Nesterov’s
acceleration technique (Nesterov, 1983; 2004) in concert with gradient compression and variance
reduction. For instance, Li et al. (2020) developed the ADIANA method, which adds acceleration on
top of a variant of DIANA that relies on the computation of full-batch gradients on all nodes. The
resulting method offers provable speedups in convex and strongly convex regimes.

2 MINING FOR SMOOTHNESS INFORMATION

One size fits all. Arguably, one of the most ubiquitous, if not the most ubiquitous, assumptions used
in the literature on first-order optimization methods is that of L-smoothness (Nesterov, 2004). A
differentiable function φ : Rd → R is said to be L-smooth if there exists a constant L ≥ 0 such that
for all x, y ∈ Rd

φ(x) ≤ φ(y) + 〈∇φ(x), x− y〉+ L
2 ‖x− y‖

2. (2)

However, most works in the area of finite-sum distributed optimization use it very crudely: they
assume that all local loss functions fi as well as their average, f = 1

n

∑
i fi, share the same

smoothness constant L (Tang et al., 2019; Woodworth et al., 2020b; Stich, 2020). This is crude
because much information is lost this way. Indeed, assuming that each fi is Li-smooth, it is well
known that f is Lf -smooth with Lf satisfying the inequality Lf ≤ 1

n

∑
i Li. In the light of this,

the above assumption is crude as it effectively replaces the values L1, . . . , Ln and Lf with a single
parameter L satisfying L ≥ max{L1, . . . , Ln}. Since the stepsizes and convergence rates of first-
order methods depend on the smoothness constant(s) employed, convergence analysis relying on such
crude approximation may be significantly suboptimal, and the methods too slow when implemented
following the theory.

“Like treasure hidden in a field, which a man found and covered up” (Mat 13:44). The starting
point of this paper is the observation that there is a hitherto untapped richness of smoothness
information that can be used to construct better distributed optimization algorithms and obtain better
theory. This information is available, but hidden from sight, and is based on the notion of matrix
smoothness.

Definition 1 (Matrix Smoothness). We say that a differentiable function φ : Rd → R is L-smooth if
there exists a symmetric positive semidefinite matrix L � 0 such that for all x, y ∈ Rd

φ(x) ≤ φ(y) + 〈∇φ(y), x− y〉+ 1
2‖x− y‖

2
L. (3)

The standard L-smoothness condition (2) is obtained as a special case of (3) for matrices of the form
L = LI, where I is the identity matrix. Function fi appearing in (1) is often the average loss over the

2

Published as a conference paper at ICLR 2021

training data stored on node i, i.e.,

fi(x) = 1
mi

mi∑
m=1

φim(Aimx), (4)

where Aim ∈ Rdim×d is a data matrix, and φim : Rdim → R is a differentiable function (e.g., the
loss over all but the last linear layer of a NN). The following simple result from Qu & Richtárik
(2016b), used therein in the context of randomized coordinate descent methods, states that if the loss
functions φim are smooth in the standard scalar sense, then fi is smooth in the matrix sense.
Lemma 1. If φim is λim-smooth, then the function fi defined in (4) is Li-smooth with

Li = 1
mi

mi∑
m=1

λimA>imAim. (5)

In cases where the local functions fi are of the form (4)—and it is clear this structure is ubiquitous—
there is a lot of potentially useful information contained in the matrix smoothness “constant” Li.
If we were to use the scalar smoothness constant of fi instead, we would be effectively tossing
this richness away, and replacing it with Li = λmax(Li); the largest eigenvalue of Li. This seems
wasteful. As we show in this work, it is. However, we offer a fix.

3 MOTIVATION AND CONTRIBUTIONS

To the best of our knowledge, none of the current distributed optimization methods, including the
methods DCGD (Khirirat et al., 2018), DIANA (Mishchenko et al., 2019) and ADIANA (Li et al.,
2020) discussed in Section 1, are capable of exploiting the inherently rich data-dependent smoothness
structure of the local losses beyond standard smoothness constants. To this effect, we impose the
following assumption throughout the paper:
Assumption 1. The functions fi : Rd → R are differentiable, convex, lower bounded1 and Li-
smooth. Moreover, f is L-smooth with the (standard) smoothness constant L := λmax(L).

In this paper, we argue that when training supervised models, smoothness matrices (see Definition 1)—
information-rich generalizations of the classical and ubiquitous smoothness constants—can and
should be exploited for further dramatic gains, both in theory and practice.

3.1. Unbiased diagonal sketches. We study unbiased diagonal sketches, defined as follows:
Definition 2 (Unbiased diagonal sketch). Let S be a random subset of the set of coordinates/features
of the model x ∈ Rd we wish to train, i.e., S ⊆ [d] := {1, 2, . . . , d}. Let S be proper, i.e.,
pj := Prob(j ∈ S) > 0. We now define a random diagonal matrix (sketch) C = CS ∈ Rd×d via

C = Diag(c1, . . . , cd), cj =
{

1/pj if j∈S,
0 otherwise.

(6)

Note that given a vector x = (x1, . . . , xd) ∈ Rd, we have (Cx)j =
{
xj/pj if j∈S

0 if j /∈S . So, we can
control the sparsity level of the product Cx by engineering the properties of the random set S. Also
note that E[Cx] = x for all x.

3.2. Data-dependent sparsification operators. In order to further alleviate the communication bur-
den inherent in distributed optimization, we further propose data-dependent sparsification operators
that can take full advantage of the smoothness matrices Li associated with the local losses fi. To the
best of our knowledge, this is in sharp contrast with the design of all existing tractable compression
techniques used in distributed training, which are proposed independently of the training data, and
typically based on intuitive or information-theoretic principles. With each node i we associate an
unbiased diagonal matrix Ci of the form (6). We use this and the smoothness matrix of fi to define a
sparsification technique, described next.
Definition 3 (Data-dependent sparsification). In situations when the i-th node wished to communicate
local gradient ∇fi(x), we ask the node to send the sparse (=compressed) vector CiL

†1/2
i ∇fi(x) to

1Lower boundedness of fi(x) can be dropped if Li � 0 is positive definite. This part of the assumption is not a restriction in applications
as all loss function are lower bounded.

3

Published as a conference paper at ICLR 2021

Table 1: Summary of theoretical results obtained in this work with hidden log 1
ε factors and constants.

Below n is the number of machines, d is the number of parameters of model, Lmax = maxi Li, Li =

λmax(Li) and the expected smoothness constant L̃max is defined in (16). The variance of generic
compression operator used in the original methods is denoted by ω. In case of sparsification, we have
ω = d/τ − 1 = O(n) when the expected size of selected coordinates is τ = d/n. Parameters ν1, ν2

and ν describing distribution of matrices Li are defined in (21).

Regime ∇fi(x∗) ≡ 0 arbitrary∇fi(x∗) arbitrary∇fi(x∗)

Original
Methods

DCGD
(Khirirat et al., 2018)

DIANA
(Mishchenko et al., 2019)

ADIANA
(Li et al., 2020)

Iteration
Complexity

L
µ + ωLmax

nµ ω + Lmax
µ + ωLmax

nµ


ω+ω

√
Lmax
nµ

if n≤ω

ω+

√
Lmax
µ

+

√
ω

√
ωLmax
nµ

√
Lmax
µ

if n>ω

Iteration
Complexity
τ = d/n

Lmax
µ n+ Lmax

µ n+ n
√
Lmax
nµ ≡ n+

√
nLmax

µ

New
Methods

DCGD+
(Algorithm 1)

DIANA+
(Algorithm 2)

ADIANA+
(Algorithm 3)

Iteration
Complexity

L
µ + L̃max

nµ ωmax + L
µ + L̃max

nµ


ωmax+

√
ωmax

L̃max
nµ

if nL≤L̃max

ωmax+

√
L
µ

+

√
ωmax

√
L̃max
nµ

√
L
µ

if nL>L̃max

Iteration
Complexity
τ = d/n

Lmax
nµ + Lmax

dµ
(if ν, ν1 are O(1))

n+ Lmax
nµ + Lmax

dµ
(if ν, ν1 are O(1))

 n+n
(
Lmax
nµ

)1/4
if nL≤L̃max

n+

√
Lmax
nµ

+
(
n
Lmax
µ

)3/8
if nL>L̃max

(if ν,ν2 are O(1) and Lmax/µ is O(nd2))

Reference Theorem 3, Remark 3 Theorem 4, Remark 4 Theorem 5, Remark 5
Speedup

factor (up to) min(n, d) min(n, d)

{ √
d if nL≤L̃max and Lmax/µ=O(nd2)√

min(n,d) if nL>L̃max and Lmax/µ=O(nd2)

the server instead. The server then constructs (=decompresses) an unbiased estimator of ∇fi(x) as
follows:

gi(x) = L
1/2
i CiL

†1/2
i ∇fi(x), (7)

where L
†1/2
i denotes the square root of the Moore-Penrose pseudoinverse of Li.

Notable differences of our proposed communication protocol when compared with standard sparsifi-
cation techniques are: i) we use the smoothness matrix Li, ii) the compressed vector CiL

†1/2
i ∇fi(x)

is not unbiased, iii) we devise a separate decompression mechanism (7), also involving Li, and this
enforces effective unbiasedness.

3.3. Matrix-smoothness-aware redesign of 3 methods. To showcase the power of our approach,
we demonstrate how our matrix-smoothness-aware sparsification technique (7) can be adapted to
DCGD, DIANA and ADIANA, in each case leading to significant communication savings. By doing
so, we show that matrix smoothness can be effectively used to speed up communication compression,
variance reduction and acceleration, respectively. This results in three novel methods: DCGD+,
DIANA+, and ADIANA+.

3.4. Dramatic improvements in complexity results. We perform complexity analyses for our
methods and derive convergence rates under matrix smoothness2 (see Assumption 1) and strong
convexity assumptions (see Theorems 3, 4 and 5). We show that new methods always outperform the
originals/baselines, and often dramatically so. Main theoretical results are summarized in Table 1.

REFERENCES

Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. In
J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Q. Weinberger (eds.), Ad-
vances in Neural Information Processing Systems, volume 24, pp. 873–881. Curran Asso-
ciates, Inc., 2011. URL https://proceedings.neurips.cc/paper/2011/file/
f0e52b27a7a5d6a1a87373dffa53dbe5-Paper.pdf.

2The closest to our result is work of Hanzely & Richtárik (2019b) and their ISEGA method which is able to exploit diagonal smoothness
matrices. To the best of our knowledge, we are the first to fully exploit smoothness matrices of arbitrary structure, and elevate them as a new
tool at the disposal of algorithm designers.

4

https://proceedings.neurips.cc/paper/2011/file/f0e52b27a7a5d6a1a87373dffa53dbe5-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/f0e52b27a7a5d6a1a87373dffa53dbe5-Paper.pdf

Published as a conference paper at ICLR 2021

0 1000 2000 3000 4000 5000
Iteration

10 1

100

Re
la

tiv
e

su
bo

pt
im

al
ity a1a

importance+
uniform+
uniform

0 1000 2000 3000 4000 5000
Iteration

10 1

100

Re
la

tiv
e

su
bo

pt
im

al
ity duke

importance+
uniform+
uniform

0 1000 2000 3000 4000 5000
Iteration

10 3

10 2

10 1

100

Re
la

tiv
e

su
bo

pt
im

al
ity phishing

importance+
uniform+
uniform

0 1000 2000 3000 4000 5000
Iteration

10 2

10 1

100

Re
la

tiv
e

su
bo

pt
im

al
ity a8a

importance+
uniform+
uniform

Figure 1: Numerical experiment on logistic regression with LibSVM data Chang & Lin (2011).
Comparison of our sparsification strategy of sampling size τ = 1 for DIANA+ (Algorithm 2) using
i) importance sampling with probabilities (26), ii) uniform sampling with pi = (1

d ,
1
d , . . .

1
d)> and

iii) DIANA (Mishchenko et al., 2019) using standard sparsification scheme with uniform sampling.
All methods are run with stepsizes as dictated by theory. As expected, this confirms our theoretical
findings. First, it demonstrates that our sparsification (7) always outperforms the naive/direct sparsifi-
cation, sometimes by a large margin. Second, it shows the benefit of importance sampling (26) over
the uniform sampling.

Sulaiman Alghunaim, Kun Yuan, and Ali H Sayed. A linearly convergent proximal gradient algorithm
for decentralized optimization. In Advances in Neural Information Processing Systems, volume 32,
pp. 2848–2858. Curran Associates, Inc., 2019. URL https://proceedings.neurips.
cc/paper/2019/file/e9fd7c2c6623306db59b6aef5c0d5cac-Paper.pdf.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Communication-
efficient SGD via gradient quantization and encoding. In Advances in Neural Information Process-
ing Systems 30, pp. 1709–1720, 2017.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and Cédric
Renggli. The convergence of sparsified gradient methods. In Neural Information Processing
Systems Conf. (NeurIPS), 2018.

Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. J. Mach.
Learn. Res., 18(1):8194–8244, January 2017. ISSN 1532-4435.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signSGD: Compressed optimisation for non-convex problems. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80, pp. 560–569. PMLR, 2018.

Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan. On biased compression
for distributed learning. arXiv:2002.12410, 2020.

Joseph K. Bradley, Aapo Kyrola, Danny Bickson, and Carlos Guestrin. Parallel coordinate descent
for L1-regularized loss minimization. In Proceedings of the 28th International Conference on
Machine Learning, 2011.

Chih-Chung Chang and Chih-Jen Lin. LibSVM: a library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):1–27, 2011.

Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. A unified theory of SGD: Variance reduction,
sampling, quantization and coordinate descent. In The 23rd International Conference on Artificial
Intelligence and Statistics, 2020a.

Eduard Gorbunov, Dmitry Kovalev, Dmitry Makarenko, and Peter Richtárik. Linearly converging
error compensated sgd. In 34th Conference on Neural Information Processing Systems (NeurIPS
2020), 2020b.

Robert M. Gower and Peter Richtárik. Randomized iterative methods for linear systems. SIAM J.
Matrix Anal. Appl., 36:1660–1690, 2015.

Robert M. Gower, Mark Schmidt, Francis Bach, and Peter Richtárik. Variance-reduced methods for
machine learning. Proceedings of the IEEE, 108(11):1968–1983, 2020.

5

https://proceedings.neurips.cc/paper/2019/file/e9fd7c2c6623306db59b6aef5c0d5cac-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/e9fd7c2c6623306db59b6aef5c0d5cac-Paper.pdf

Published as a conference paper at ICLR 2021

Filip Hanzely and Peter Richtárik. Accelerated coordinate descent with arbitrary sampling and best
rates for minibatches. In Kamalika Chaudhuri and Masashi Sugiyama (eds.), Proceedings of Ma-
chine Learning Research, volume 89 of Proceedings of Machine Learning Research, pp. 304–312.
PMLR, 16–18 Apr 2019a. URL http://proceedings.mlr.press/v89/hanzely19a.
html.

Filip Hanzely and Peter Richtárik. One method to rule them all: Variance reduction for data,
parameters and many new methods. preprint arXiv:1905.11266, 2019b.

Filip Hanzely, Konstantin Mishchenko, and Peter Richtarik. SEGA: Variance reduction via gradient
sketching. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 31, pp. 2082–2093. Curran As-
sociates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
fc2c7c47b918d0c2d792a719dfb602ef-Paper.pdf.

Samuel Horváth, Chen-Yu Ho, Ludovít Horváth, Atal Narayan Sahu, Marco Canini, and Peter
Richtárik. Natural compression for distributed deep learning. CoRR, abs/1905.10988, May 2019a.
URL http://arxiv.org/abs/1905.10988.

Samuel Horváth, Dmitry Kovalev, Konstantin Mishchenko, Sebastian Stich, and Peter Richtárik.
Stochastic distributed learning with gradient quantization and variance reduction. preprint
arXiv:1904.05115, 2019b.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback
fixes signSGD and other gradient compression schemes. In International Conference on Machine
Learning, pp. 3252–3261. PMLR, 2019.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for federated learning. In
Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pp. 5132–5143. PMLR,
13–18 Jul 2020. URL http://proceedings.mlr.press/v119/karimireddy20a.
html.

Sarit Khirirat, Hamid Reza Feyzmahdavian, and Mikael Johansson. Distributed learning with
compressed gradients. In arXiv preprint arXiv:1806.06573, 2018.

Anastasia Koloskova, Sebastian Stich, and Martin Jaggi. Decentralized stochastic optimization
and gossip algorithms with compressed communication. In Kamalika Chaudhuri and Ruslan
Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pp. 3478–3487. PMLR, 09–15 Jun
2019. URL http://proceedings.mlr.press/v97/koloskova19a.html.

Dmitry Kovalev, Samuel Horváth, and Peter Richtárik. Don’t jump through hoops and remove
those loops: Svrg and katyusha are better without the outer loop. In Aryeh Kontorovich and
Gergely Neu (eds.), Proceedings of the 31st International Conference on Algorithmic Learning
Theory, volume 117 of Proceedings of Machine Learning Research, pp. 451–467, San Diego,
California, USA, 08 Feb–11 Feb 2020. PMLR. URL http://proceedings.mlr.press/
v117/kovalev20a.html.

Zhize Li, Dmitry Kovalev, Xun Qian, and Peter Richtarik. Acceleration for compressed gra-
dient descent in distributed and federated optimization. In Hal Daumé III and Aarti Singh
(eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pp. 5895–5904. PMLR, 13–18 Jul 2020. URL
http://proceedings.mlr.press/v119/li20g.html.

Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic gradient
for nonconvex optimization. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 28, pp. 2737–2745. Curran As-
sociates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/
452bf208bf901322968557227b8f6efe-Paper.pdf.

6

http://proceedings.mlr.press/v89/hanzely19a.html
http://proceedings.mlr.press/v89/hanzely19a.html
https://proceedings.neurips.cc/paper/2018/file/fc2c7c47b918d0c2d792a719dfb602ef-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/fc2c7c47b918d0c2d792a719dfb602ef-Paper.pdf
http://arxiv.org/abs/1905.10988
http://proceedings.mlr.press/v119/karimireddy20a.html
http://proceedings.mlr.press/v119/karimireddy20a.html
http://proceedings.mlr.press/v97/koloskova19a.html
http://proceedings.mlr.press/v117/kovalev20a.html
http://proceedings.mlr.press/v117/kovalev20a.html
http://proceedings.mlr.press/v119/li20g.html
https://proceedings.neurips.cc/paper/2015/file/452bf208bf901322968557227b8f6efe-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/452bf208bf901322968557227b8f6efe-Paper.pdf

Published as a conference paper at ICLR 2021

Ji Liu and Ce Zhang. Distributed Learning Systems with First-Order Methods, volume 9. Foundations
and Trends in Databases, 2020. doi: 10.1561/1900000062.

Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning
with compressed gradient differences. In arXiv preprint arXiv:1901.09269, 2019.

Konstantin Mishchenko, Filip Hanzely, and Peter Richtárik. 99% of worker-master communication
in distributed optimization is not needed. In Jonas Peters and David Sontag (eds.), Proceedings of
the 36th Conference on Uncertainty in Artificial Intelligence (UAI), volume 124 of Proceedings of
Machine Learning Research, pp. 979–988. PMLR, 03–06 Aug 2020.

Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of conver-
gence O(1/k2). In Doklady AN USSR, volume 269, pp. 543–547, 1983.

Yurii Nesterov. Introductory lectures on convex optimization: a basic course. Kluwer Academic
Publishers, 2004.

Yurii Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
Journal on Optimization, 22:341–362, 2012.

Julie Nutini, Issam Laradji, and Mark Schmidt. Let’s make block coordinate descent go fast: Faster
greedy rules, message-passing, active-set complexity, and superlinear convergence. arXiv preprint
arXiv:1712.08859, 2017.

X. Qian, Peter Richtárik, and Tong Zhang. Error compensated distributed SGD can be accelerated.
arXiv: Optimization and Control, 2020.

Zheng Qu and Peter Richtárik. Coordinate descent with arbitrary sampling II: expected separable
overapproximation. Optimization Methods and Software, 31:858–884, 2016. doi: 10.1080/
10556788.2016.1190361.

Zheng Qu and Peter Richtárik. Coordinate descent with arbitrary sampling I: algorithms and
complexity. Optimization Methods and Software, 31:829–857, 2016a.

Zheng Qu and Peter Richtárik. Coordinate descent with arbitrary sampling II: algorithms and
complexity. Optimization Methods and Software, 31:858–884, 2016b.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A lock-free approach
to parallelizing stochastic gradient descent. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira,
and K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems, volume 24,
pp. 693–701. Curran Associates, Inc., 2011. URL https://proceedings.neurips.cc/
paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf.

Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function. Mathematical Programming, 144:1–38, 2014.

Peter Richtárik and Martin Takáč. On optimal probabilities in stochastic coordinate descent methods.
Optim Lett, 10:1233–1243, 2016a. doi: https://doi.org/10.1007/s11590-015-0916-1.

Peter Richtárik and Martin Takáč. Parallel coordinate descent methods for big data optimization.
Mathematical Programming, 156:433–484, 2016b.

Mher Safaryan and Peter Richtárik. On stochastic sign descent methods. preprint arXiv:1905.12938,
2019.

Mher Safaryan, Egor Shulgin, and Peter Richtárik. Uncertainty principle for communication com-
pression in distributed and federated learning and the search for an optimal compressor. preprint
arXiv:2002.08958, 2020.

Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis, Changhoon Kim, Arvind
Krishnamurthy, Masoud Moshref, Dan R. K. Ports, and Peter Richtárik. Scaling distributed
machine learning with in-network aggregation. In The 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’21 Fall), 2021. URL http://arxiv.org/abs/
1903.06701.

7

https://proceedings.neurips.cc/paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf
http://arxiv.org/abs/1903.06701
http://arxiv.org/abs/1903.06701

Published as a conference paper at ICLR 2021

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and
application to data-parallel distributed training of speech DNNs. In Fifteenth Annual Conference
of the International Speech Communication Association, 2014.

Sebastian U. Stich. Local SGD converges fast and communicates little. In International Conference
on Learning Representations, 2020.

Sebastian U. Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates for
SGD with delayed gradients and compressed communication. arXiv preprint arXiv:1909.05350,
2019.

Hanlin Tang, Chen Yu, Xiangru Lian, Tong Zhang, and Ji Liu. DoubleSqueeze: Parallel stochastic
gradient descent with double-pass error-compensated compression. In Int. Conf. Machine Learning,
volume PMLR 97, pp. 6155–6165, 2019.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. PowerSGD: Practical low-rank gradi-
ent compression for distributed optimization. In Neural Information Processing Systems Conf.
(NeurIPS), 2019.

Hongyi Wang, Scott Sievert, Shengchao Liu, Zachary Charles, Dimitris Papailiopoulos, and Stephen
Wright. Atomo: Communication-efficient learning via atomic sparsification. In Advances in
Neural Information Processing Systems, 2018.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:
Ternary gradients to reduce communication in distributed deep learning. In Advances in Neural
Information Processing Systems, pp. 1509–1519, 2017.

Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai, Brian Bullins, Brendan Mcmahan,
Ohad Shamir, and Nathan Srebro. Is local SGD better than minibatch SGD? In Hal Daumé III
and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pp. 10334–10343. PMLR, 13–18 Jul
2020a. URL http://proceedings.mlr.press/v119/woodworth20a.html.

Blake E. Woodworth, Kumar Kshitij Patel, and Nati Srebro. Minibatch vs Local SGD for Heteroge-
neous Distributed Learning. Advances in Neural Information Processing Systems 33, 2020b.

Jiaxiang Wu, Weidong Huang, Junzhou Huang, and Tong Zhang. Error compensated quantized
SGD and its applications to large-scale distributed optimization. In Jennifer Dy and Andreas
Krause (eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 5325–5333, Stockholmsmässan, Stockholm
Sweden, 10–15 Jul 2018. PMLR. URL http://proceedings.mlr.press/v80/wu18d.
html.

Hang Xu, Chen-Yu Ho, Ahmed M. Abdelmoniem, Aritra Dutta, El Houcine Bergou, Konstantinos
Karatsenidis, Marco Canini, and Panos Kalnis. Compressed Communication for Distributed
Deep Learning: Survey and Quantitative Evaluation. Technical report, KAUST, Apr 2020. URL
http://hdl.handle.net/10754/662495.

Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, and Ce Zhang. ZipML: Training linear
models with end-to-end low precision, and a little bit of deep learning. In Proceedings of the 34th
International Conference on Machine Learning, volume 70, pp. 4035–4043, 2017.

8

http://proceedings.mlr.press/v119/woodworth20a.html
http://proceedings.mlr.press/v80/wu18d.html
http://proceedings.mlr.press/v80/wu18d.html
http://hdl.handle.net/10754/662495

Published as a conference paper at ICLR 2021

Appendix: “Smoothness Matrices Beat
Smoothness Constants: Better
Communication Compression Techniques
for Distributed Optimization”
CONTENTS

1 Introduction 1

2 Mining for Smoothness Information 2

3 Motivation and Contributions 3

A Introduction 11

A.1 Compressed communication . 11

A.2 Variance reduction . 11

A.3 Acceleration . 12

A.4 Further tricks . 12

B Mining for Smoothness Information 12

B.1 One size fits all . 12

B.2 “According to the work of their hands” (Lam 3:64) 12

B.3 “Like treasure hidden in a field, which a man found and covered up” (Mat 13:44) . 13

C Motivation and Contributions 13

C.1 Unbiased diagonal sketches . 13

C.2 Data-dependent sparsification operators . 14

C.3 Matrix-smoothness-aware redesign of 3 distributed methods 15

C.4 Dramatic improvements in complexity results . 15

C.5 Single node case . 15

C.6 Lower bounds . 15

C.7 Experiments . 16

D New Communication-Efficient Distributed Methods
Exploiting Matrix Smoothness 16

D.1 DCGD+ . 16

D.2 Variance reduction: DIANA+ . 17

D.3 Acceleration with variance reduction: ADIANA+ 18

E Improvements Over the Original Methods 19

E.1 Parameters describing distribution of Li . 20

9

Published as a conference paper at ICLR 2021

E.2 Importance sampling for DCGD+ . 20

E.3 Importance sampling for DIANA+ . 20

E.4 Independent sampling for ADIANA+ . 21

F Experiments 21

F.1 Experimental Setup . 22

F.2 Variance reduction with new sparsification and importance sampling 22

F.3 The proposed and usual sparsification techniques for the 3 distributed methods . . . 22

F.4 The effect of sparsification level τ on the convergence rate 22

G Conclusions, Extensions and Future Work 24

H Limitations 25

I Table of Frequently Used Notation 26

J Theory in the Single Node Case: RCD as Sketched Gradient Descent (SkGD) 27

J.1 ‘NSync . 27

J.2 Sketched Gradient Descent (SkGD) . 28

J.3 CGD+ . 29

K Lower Bounds for Sketches as Linear Compression Operators 31

K.1 Fixed sketches . 31

K.2 Random sketches . 32

K.3 Optimal sketches . 33

K.4 Random sketches with linear constraints . 34

K.5 Variance against communication trade-off . 34

L Proofs 36

L.1 Proof of Theorem 9 . 36

L.2 Proof of Theorem 13 . 36

L.3 Proof of Theorem 3 . 37

L.4 Proof of Theorem 4 . 39

L.5 Proof of Theorem 5 . 41

M Improvements Over The Original Methods 46

M.1 Importance sampling for DCGD+ . 46

M.2 Importance sampling for DIANA+ . 47

M.3 Independent sampling for ADIANA+ . 48

N Variance Reduction: ISEGA+ 50

10

Published as a conference paper at ICLR 2021

O Variance Reduction with Bi-directional Compression: DIANA++ 53

A INTRODUCTION

With the desire to build and train high quality machine learning models comes an increased appetite
for larger models, both in terms of the number of parameters encoding them, and in the amount
of data required to train them. In the big data regime, the data is partitioned among many parallel
machines, which then cooperatively train a single global model, usually orchestrated by a central
server. Distributed training is cast as the distributed optimization problem

min
x∈Rd

f(x) +R(x), f(x) :=
1

n

n∑
i=1

fi(x), (8)

where d is the number of parameters of model x ∈ Rd, n is the number of machines participating
in the training, fi(x) is the loss associated with the data stored on machine i ∈ [n] := {1, 2, . . . , n},
f(x) is the empirical loss, and R(x) is a regularizer. Ample research over the past two decades
has shown that first-order methods are highly scalable and as a result are the methods of choice for
distributed optimization problems (Liu & Zhang, 2020). In particular, a substantial amount of work
has been devoted to speeding up the training process by developing efficient methods empowered
with techniques such as compressed communication, variance reduction and acceleration.

A.1 COMPRESSED COMMUNICATION

In distributed training, compute nodes have to communicate with each other, often via a central
server, in order to be able to maintain consensus and jointly train a single global model. However,
communication of the information pertaining to local progress, which is typically contained in
gradient(s) distilled from local data, is almost invariably the key bottleneck in distributed training
systems (Xu et al., 2020). One popular way to address this issue is to reduce the number of bits
encoding the vector/tensor to be transferred via the help of a lossy compression operator. Numerous
unbiased gradient compression operators have been proposed for this purpose, including several types
of sparsifications (Wang et al., 2018; Mishchenko et al., 2020; Alistarh et al., 2018) and quantizations
(Alistarh et al., 2017; Zhang et al., 2017; Horváth et al., 2019a; Wu et al., 2018). Certain (classes of)
biased compression operators have been proposed as well, including low-rank approximation (Vogels
et al., 2019), sign-based compressors (Seide et al., 2014; Bernstein et al., 2018; Safaryan & Richtárik,
2019) and contractive compressors (Karimireddy et al., 2019; Stich & Karimireddy, 2019; Tang et al.,
2019; Beznosikov et al., 2020; Gorbunov et al., 2020b).

A.2 VARIANCE REDUCTION

A marked issue that needs to be addressed by successful distributed optimization methods has to
do with the (potential) “dissimilarity” of the local loss functions f1, . . . , fn, which in turn is due
to the heterogeneity of the training data defining these functions. The higher the dissimilarity, the
harder it is for the devices to find the minimizer of (8). This issue exists even in the unregularized
case (R ≡ 0). Indeed, while in this case 1

n

∑
i∇fi(x∗) = 0 if x∗ is a minimizer of f , this does

not mean that the individual gradients, ∇f1(x∗), . . . ,∇fn(x∗), are all zero. This shows that local
gradient information alone is not enough for any node to “realize” that a solution has been found,
which encourages further, in this case unnecessary, iterations. If unaddressed properly, an algorithm
is forced to use smaller learning rates, and this leads to unnecessarily slow convergence. On the
other hand, when a fixed learning rate is used, the rate is fast, but convergence stops in a potentially
large neighborhood3 of the optimum x∗. This issue is exacerbated further by the extra noise coming
from gradient compression. Indeed, this noise prevents methods such as Distributed Compressed
Gradient Descent (DCGD) (Khirirat et al., 2018) from converging to x∗ with a constant learning rate
even in the interpolation regime characterized by the identities ∇fi(x∗) = 0 for all i. Fortunately,
these issues can be resolved via carefully designed variance reduction techniques (Gower et al.,
2020). In particular, the first variance reduction mechanism for removing the variance coming from

3In the R ≡ 0 case, this neighborhood is proportional to the variance of the local gradients at the optimum:
1
n

∑n
i=1 ‖∇fi(x

∗)‖2.

11

Published as a conference paper at ICLR 2021

compression operators in distributed training is due to Mishchenko et al. (2019), embodied in their
DIANA algorithm. The method was initially analyzed for ternary quantization only (Wen et al.,
2017), and later generalized to handle a general class of unbiased compression operators (Horváth
et al., 2019b; Gorbunov et al., 2020b).

A.3 ACCELERATION

To speed up distributed training even further, it is often possible to employ Nesterov’s acceleration
technique (Nesterov, 1983; 2004) in concert with gradient compression and variance reduction. For
instance, Li et al. (2020) developed the ADIANA method, which adds acceleration on top of a
variant of DIANA that relies on the computation of full-batch gradients on all nodes. The resulting
method offers provable speedups in convex and strongly convex regimes. Another example is the
method ECLK of Qian et al. (2020), which employs compressed communication via any (possibly
biased) compressor satisfying a certain contraction property in combination with a slightly different
variance reduction technique known as error compensation (Stich & Karimireddy, 2019; Karimireddy
et al., 2019), while acceleration is offered by a loopless variant of the accelerated method Katyusha
(Allen-Zhu, 2017; Kovalev et al., 2020).

A.4 FURTHER TRICKS

Numerous other techniques are often used to improve some other aspects of distributed training,
including implementing multiple local gradient steps before communication (Stich, 2020; Karim-
ireddy et al., 2020; Woodworth et al., 2020a), asynchronous communication protocols (Agarwal &
Duchi, 2011; Lian et al., 2015; Recht et al., 2011), in-network aggregation (Sapio et al., 2021), and
performing the distributed training in a decentralized peer-to-peer manner without the reliance on an
orchestrating server (Koloskova et al., 2019; Alghunaim et al., 2019). However, in this work, we do
not explore these directions and focus on the three techniques described before, namely, compressed
communication, variance reduction and acceleration.

B MINING FOR SMOOTHNESS INFORMATION

B.1 ONE SIZE FITS ALL

Arguably, one of the most ubiquitous, if not the most ubiquitous, assumptions used in the literature on
first-order optimization methods is that of L-smoothness (Nesterov, 2004). A differentiable function
φ : Rd → R is said to be L-smooth if there exists a constant L ≥ 0 such that

φ(x) ≤ φ(y) + 〈∇φ(x), x− y〉+
L

2
‖x− y‖2 (9)

holds for all x, y ∈ Rd. However, most works in the area of finite-sum distributed optimization use it
very crudely: they assume that all local loss functions fi as well as their average, f = 1

n

∑
i fi, share

the same smoothness constant L (Tang et al., 2019; Woodworth et al., 2020b; Stich, 2020). This is
crude because much information is lost this way. Indeed, assuming that each fi is Li-smooth, it is
well known that f is Lf -smooth with Lf satisfying the inequality Lf ≤ 1

n

∑
i Li. In the light of

this, the above assumption is crude as it effectively replaces the values L1, . . . , Ln and Lf with a
single parameter L satisfying L ≥ max{L1, . . . , Ln}. Since the stepsizes and convergence rates of
first-order methods depend on the smoothness constant(s) employed, convergence analysis relying
on such crude approximation may be significantly suboptimal, and the methods too slow when
implemented following the theory.

B.2 “ACCORDING TO THE WORK OF THEIR HANDS” (LAM 3:64)

Significant theoretical and practical improvement can often be obtained when taking account of all
the smoothness constants involved, avoiding the practice of replacing them all with a single crude
bound. Such analyses are more rare, but fairly common. For example, (Richtárik & Takáč, 2016a;
Hanzely & Richtárik, 2019a).

12

Published as a conference paper at ICLR 2021

B.3 “LIKE TREASURE HIDDEN IN A FIELD, WHICH A MAN FOUND AND COVERED UP” (MAT
13:44)

The starting point of this paper is the observation that there is a hitherto untapped richness of
smoothness information that can be used to construct better distributed optimization algorithms and
obtain better theory. This information is available, but hidden from sight, and is based on the notion
of matrix smoothness.
Definition 4 (Matrix Smoothness). We say that a differentiable function φ : Rd → R is L-smooth if
there exists a symmetric positive semidefinite matrix L � 0 such that

φ(x) ≤ φ(y) + 〈∇φ(y), x− y〉+
1

2
‖x− y‖2L (10)

holds for all x, y ∈ Rd.

The standard L-smoothness condition (9) is obtained as a special case of (10) for matrices of the
form L = LI, where I is the identity matrix. Function fi appearing in (8) is often the average loss
over the training data stored on node i, i.e.,

fi(x) =
1

mi

mi∑
m=1

φim(Aimx), (11)

where Aim ∈ Rdim×d is a data matrix, and φim : Rdim → R is a differentiable function (e.g., the
loss over all but the last linear layer of a NN). The following simple result from Qu & Richtárik
(2016b), used therein in the context of randomized coordinate descent methods, states that if the loss
functions φim are smooth in the standard scalar sense, then fi is smooth in the matrix sense.
Lemma 2. Assume that each φim is λim-smooth. Then the function fi defined in (11) is Li-smooth
with

Li =
1

mi

mi∑
m=1

λimA>imAim. (12)

In cases where the local functions fi are of the form (11)—and it is clear this structure is ubiquitous—
there is a lot of potentially useful information contained in the matrix smoothness “constant” Li.
If we were to use the scalar smoothness constant of fi instead, we would be effectively tossing
this richness away, and replacing it with Li = λmax(Li); the largest eigenvalue of Li. This seems
wasteful. As we show in this work, it is. However, we offer a fix.

C MOTIVATION AND CONTRIBUTIONS

To the best of our knowledge, none of the current distributed optimization methods, including the
methods DCGD (Khirirat et al., 2018), DIANA (Mishchenko et al., 2019) and ADIANA (Li et al.,
2020) discussed in Section A, are capable of exploiting the inherently rich data-dependent smoothness
structure of the local losses beyond standard smoothness constants. To this effect, we impose the
following assumption throughout the paper:
Assumption 2. The functions fi : Rd → R are differentiable, convex, lower bounded4 and Li-
smooth. Moreover, f is L-smooth. Let L := λmax(L) be the (standard) smoothness constant of
f .

In this paper, we argue that when training supervised models, smoothness matrices (see Definition 4)—
information-rich generalizations of the classical and ubiquitous smoothness constants—can and
should be exploited for further dramatic gains, both in theory and practice.

C.1 UNBIASED DIAGONAL SKETCHES

We study unbiased diagonal sketches, defined as follows:

4Lower boundedness of fi(x) can be dropped if Li � 0 is positive definite. This part of the assumption is
not a restriction in applications as all loss function are lower bounded.

13

Published as a conference paper at ICLR 2021

Table 2: Original and proposed new methods.

ORIGINAL DCGD DIANA ADIANA

NEW DCGD+
(ALG.1)

DIANA+
(ALG.2)

ADIANA+
(ALG.3)

PROXIMAL 3 3 3
DISTRIBUTED 3 3 3

VARIANCE REDUCED 7 3 3
ACCELERATED 7 7 3

Table 3: Summary of theoretical results obtained in this work with hidden log 1
ε factors and constants.

Below n is the number of machines, d is the number of parameters of model, Lmax = maxi Li, Li =

λmax(Li) and the expected smoothness constant L̃max is defined in (16). The variance of generic
compression operator used in the original methods is denoted by ω. In case of sparsification, we have
ω = d/τ − 1 = O(n) when the expected size of selected coordinates is τ = d/n. Parameters ν1, ν2

and ν describing distribution of matrices Li are defined in (21).

Regime ∇fi(x∗) ≡ 0 arbitrary∇fi(x∗) arbitrary∇fi(x∗)

Original
Methods

DCGD
(Khirirat et al., 2018)

DIANA
(Mishchenko et al., 2019)

ADIANA
(Li et al., 2020)

Iteration
Complexity

L
µ + ωLmax

nµ ω + Lmax
µ + ωLmax

nµ


ω+ω

√
Lmax
nµ

if n≤ω

ω+

√
Lmax
µ

+

√
ω

√
ωLmax
nµ

√
Lmax
µ

if n>ω

Iteration
Complexity
τ = d/n

Lmax
µ n+ Lmax

µ n+ n
√
Lmax
nµ ≡ n+

√
nLmax

µ

New
Methods

DCGD+
(Algorithm 1)

DIANA+
(Algorithm 2)

ADIANA+
(Algorithm 3)

Iteration
Complexity

L
µ + L̃max

nµ ωmax + L
µ + L̃max

nµ


ωmax+

√
ωmax

L̃max
nµ

if nL≤L̃max

ωmax+

√
L
µ

+

√
ωmax

√
L̃max
nµ

√
L
µ

if nL>L̃max

Iteration
Complexity
τ = d/n

Lmax
nµ + Lmax

dµ
(if ν, ν1 are O(1))

n+ Lmax
nµ + Lmax

dµ
(if ν, ν1 are O(1))

 n+n
(
Lmax
nµ

)1/4
if nL≤L̃max

n+

√
Lmax
nµ

+
(
n
Lmax
µ

)3/8
if nL>L̃max

(if ν,ν2 are O(1) and Lmax/µ is O(nd2))

Reference Theorem 3, Remark 3 Theorem 4, Remark 4 Theorem 5, Remark 5
Speedup

factor (up to) min(n, d) min(n, d)

{ √
d if nL≤L̃max and Lmax/µ=O(nd2)√

min(n,d) if nL>L̃max and Lmax/µ=O(nd2)

Definition 5 (Unbiased diagonal sketch). Let S be a random subset of the set of coordinates/features
of the model x ∈ Rd we wish to train, i.e., S ⊆ [d] := {1, 2, . . . , d}. Let S be proper, i.e.,
pj := Prob(j ∈ S) > 0 for all coordinates j ∈ [d]. We now define a random diagonal matrix (sketch)
C = CS ∈ Rd×d via

C = Diag(c1, . . . , cd), cj =

{
1/pj if j ∈ S,
0 otherwise.

(13)

Note that given a vector x = (x1, . . . , xd) ∈ Rd, we have

(Cx)j =

{
xj/pj if j ∈ S
0 if j /∈ S .

So, we can control the sparsity level of the product Cx by engineering the properties of the random
set S. Also note that E[Cx] = x for all x.

C.2 DATA-DEPENDENT SPARSIFICATION OPERATORS

In order to further alleviate the communication burden inherent in distributed optimization, we further
propose data-dependent sparsification operators that can take full advantage of the smoothness
matrices Li associated with the local losses fi. To the best of our knowledge, this is in sharp contrast
with the design of all existing tractable compression techniques used in distributed training, which are

14

Published as a conference paper at ICLR 2021

proposed independently of the training data, and typically based on intuitive or information-theoretic
principles.

With each node i we associate an unbiased diagonal matrix Ci of the form (13). We use this and the
smoothness matrix of fi to define a sparsification technique, described next.

Definition 6 (Data-dependent sparsification). In situations when the i-th node wished to communicate
local gradient ∇fi(x), we ask the node to send the sparse (=compressed) vector CiL

†1/2
i ∇fi(x) to

the server instead. The server then constructs (=decompresses) an unbiased estimator of ∇fi(x) as
follows:

gi(x) = L
1/2
i CiL

†1/2
i ∇fi(x), (14)

where L
†1/2
i denotes the square root of the Moore-Penrose pseudoinverse of Li.

Notable differences of our proposed communication protocol when compared with standard sparsifi-
cation techniques are: i) we use the smoothness matrix Li, ii) the compressed vector CiL

†1/2
i ∇fi(x)

is not unbiased, iii) we devise a separate decompression mechanism (14), also involving Li, and this
enforces effective unbiasedness.

C.3 MATRIX-SMOOTHNESS-AWARE REDESIGN OF 3 DISTRIBUTED METHODS

To showcase the power of our approach, we demonstrate how our matrix-smoothness-aware spar-
sification technique (14) can be adapted to DCGD, DIANA and ADIANA, in each case leading to
significant communication savings. By doing so, we show that matrix smoothness can be effectively
used to speed up communication compression, variance reduction and acceleration, respectively. This
results in three novel methods: DCGD+, DIANA+, and ADIANA+; see Table 2.

C.4 DRAMATIC IMPROVEMENTS IN COMPLEXITY RESULTS

We perform complexity analyses for our methods and derive convergence rates under matrix smooth-
ness5 (see Assumption 10) and strong convexity assumptions (see Theorems 3, 4 and 5). We show
that new methods always outperform the originals/baselines, and often dramatically so.

To illustrate the potential of our sparsification technique (14) embedded in the new methods, let
all machines i ∈ [n] use sketches Ci induced by independent6 samplings Si with probabilities
pi;j := Prob(j ∈ Si). Then we show that, with optimized probabilities pi;j , DCGD+ can be
O(min(n, d)) times faster then DCGD (see Remark 3) and DIANA+ can be O(min(n, d)) times
faster than DIANA (see Remark 4), depending on the distribution of Li. For the accelerated method,
we highlight improvements when condition numbers of subproblems are O(nd2). We show that
ADIANA+ can be faster than the original ADIANA by a factor ofO(

√
d) in high compression regime,

and by a factor of O(
√

min(n, d)) in low compression regime (see Remark 5). Main theoretical
results are summarized in Table 3.

C.5 SINGLE NODE CASE

Specializing our theory to the single machine setting (n = 1), we design new non-distributed algo-
rithms providing an alternative viewpoint to randomized coordinate descent methods (see Appendix
J).

C.6 LOWER BOUNDS

Using matrices as linear compression operators, we further investigate the trade-off between commu-
nicated bits and variance induced by the compression (see Appendix K).

5The closest to our result is work of Hanzely & Richtárik (2019b) and their ISEGA method which is able to
exploit diagonal smoothness matrices. To the best of our knowledge, we are the first to fully exploit smoothness
matrices of arbitrary structure, and elevate them as a new tool at the disposal of algorithm designers.

6Sampling Si is called independent if pi;jl := Prob({j, l} ⊆ Si) = pi;jpi;l for all j, l ∈ [d].

15

Published as a conference paper at ICLR 2021

C.7 EXPERIMENTS

We conduct numerical experiments using LibSVM datasets (Chang & Lin, 2011), confirming the
effectiveness and superiority of our sparsification protocol (14) over the standard sparsification
scheme (see Section F).

D NEW COMMUNICATION-EFFICIENT DISTRIBUTED METHODS
EXPLOITING MATRIX SMOOTHNESS

Consider the distributed optimization problem (8) with the smoothness Assumption 2 and for strongly
convex f .

Assumption 3 (µ-convexity). f : Rd → R is µ-convex for some µ > 0, i.e.,

f(x) ≥ f(y) + 〈∇f(x), x− y〉+
µ

2
‖x− y‖2

for all x, y ∈ Rd.

Below we present our new distributed methods, redesigned for matrix smoothness, and their con-
vergence guarantees. Each node i ∈ [n] generates diagonal sketches Ci independently from others
via an arbitrary sampling Si and, togther with its smoothness matrix Li, composes the compression
matrix CiL

†1/2
i . Probability matrices Pi and P̃i associated with the sampling Si and sketch Ci are

defined as follows

Pi = (pi;jl)
d
jl=1, pi;jl = Prob({j, l} ⊆ Si),

P̃i = (p̃i;jl)
d
jl=1, p̃i;jl =

pi;jl
pi;jjpi;ll

− 1.
(15)

Next, we introduce the key quantity, L̃max, describing the joint contribution of our sparsification (14)
to the complexities of the three proposed methods:

L̃max = max
1≤i≤n

L̃i, L̃i = λmax(P̃i ◦ Li), (16)

Above, ◦ stands for Hadamard (i.e. element-wise) product.

D.1 DCGD+

We now present our matrix-smoothness-aware sparsification technique by adapting DCGD algorithm
(Khirirat et al., 2018).

Upon receiving the current model xk from the server, each node computes L
†1/2
i ∇fi(xk) based on

local training data and smoothness matrix. Next, sparsified updates Ck
i L
†1/2
i ∇fi(xk) are sent back to

the server, which then averages decompressed updates L
1/2
i Ck

i L
†1/2
i ∇fi(xk) and performs proximal

step to get a new model xk+1.

Algorithm 1 DCGD+
1: Input: Initial point x0 ∈ Rd, current point xk, step size γ, diagonal sketch Ck

i
2: on server
3: send xk to all nodes
4: get sparse updates Ck

i L
†1/2
i ∇fi(xk) from each node

5: gk = 1
n

∑n
i=1 L

1/2
i Ck

i L
†1/2
i ∇fi(xk)

6: xk+1 = proxγR(xk − γgk)

With this method we get convergence up to a neighborhood.

16

Published as a conference paper at ICLR 2021

Theorem 3 (see L.3). Let Assumptions 2 and 3 hold and assume that each node generates its own
diagonal sketch Ci independently from others. Then, for the step-size

0 < γ ≤ 1

L+ 2
n L̃max

,

the iterates {xk} of Algorithm 1 satisfy

E
[
‖xk − x∗‖2

]
≤ (1− γµ)

k ‖x0 − x∗‖2 +
2γσ∗

µn
, (17)

where σ∗ := 1
n

∑n
i=1 L̃i‖∇fi(x∗)‖2L†i

.

Proof technique. First we show the unbiasedness of gk. As smoothness matrices Li are not
necessarily invertible, terms like L

1/2
i L

†1/2
i show up in the analysis and block chains of cancellations.

This part is handled by the fact that gradients ∇fi(x) of an Li-smooth function are constraint to
remain in Range Li and the mapping associated with the matrix L

1/2
i L

†1/2
i is identity on the subspace

Range(Li). Second part is the tight estimation of Ek‖gk −∇f(x∗)‖2, which describes the progress
of the method in the presence of stochasticity. Key part is getting the decomposition

Ek
[
‖gk −∇f(x∗)‖2

]
= ‖∇f(xk)−∇f(x∗)‖2 +

1

n2

n∑
i=1

∥∥∇fi(xk)
∥∥2

L
†1/2
i (P̃i◦Li)L†

1/2
i

, (18)

which shows the exact interaction between random sketches and local smoothness. We complete the
proof using the unified convergence theory of Gorbunov et al. (2020a).

D.2 VARIANCE REDUCTION: DIANA+

Next, we apply our sparsification technique to the variance reduced method DIANA (Mishchenko
et al., 2019).

In this method, each node maintains an auxiliary control vector hki , called shift, which helps to
reduce the variance coming from the sparsification. Moreover, the central server keeps track of
only the averaged shift hk. Then, the model xk as well as control vectors hki , h

k are updated by
decompressing sparse information ∆k

i using matrices Li.

Algorithm 2 DIANA+
1: Input: Initial point x0 ∈ Rd, initial shifts h0

i ∈ Range(Li), current point xk, step size parameter
γ and α, sketch Ck

i and Ck
i := L

1/2
i Ck

i L
†1/2
i , current shifts hk1 , . . . , h

k
n and hk := 1

n

∑n
i=1 h

k
i .

2: on each node
3: get xk from the server
4: send sparse update ∆k

i = Ck
i L
†1/2
i (∇fi(xk)− hki)

5: ∆k
i = L

1/2
i ∆k

i , g
k
i = hki + ∆k

i , h
k+1
i = hki + α∆k

i
6: on server
7: get sparse updates ∆k

i from each node
8: ∆k = 1

n

∑n
i=1 ∆k

i = 1
n

∑n
i=1 L

1/2
i ∆k

i

9: gk = ∆k + hk = 1
n

∑n
i=1 Ck

i

(
∇fi(xk)− hki

)
+ hki

10: xk+1 = proxγR(xk − γgk)

11: hk+1 = hk + α∆k

In this case we get rid of the neighborhood and provide linear convergence to the exact solution x∗.
We use Õ notation to ignore log 1

ε factors and constants.
Theorem 4 (see L.4). Let Assumptions 2 and 3 hold and assume that each node generates its own
diagonal sketch Ci independently from others. Then, for the step-size

γ =
1

L+ 6
n L̃max

,

17

Published as a conference paper at ICLR 2021

Algorithm 2 guarantees E
[
‖xk − x∗‖2

]
≤ ε after

Õ

(
ωmax +

L

µ
+
L̃max

nµ

)
(19)

iterations, where ωmax = max1≤i≤n ωi and ωi = max1≤j≤d
1
pi;j
− 1 is the variance of compression

operator induced by sketch Ci.

Proof technique. The structure of the proof resembles the one for DCGD+. With the introduced
shift vectors, the unbiasedness of gk additionally requires hki ∈ Range(Li). This is resolved by
the initialization h0

i ∈ Range(Li) and linear update rule for hk+1
i in line 5. The proof develops a

decomposition similar to (18) with modified second term σk := 1
n

∑n
i=1 ‖hki −∇f(x∗)‖2

L†i
involving

shifts hki . To avoid the neighborhood term in (17) and guarantee a linear convergence for xk, we make
σk converge linearly too. Key technical part of the proof is to establish contracting recurrence relation
for σk which boils down to E[C>i L†iCi] � (ωi + 1)L†i . The latter bound justifies the structure of
Ci as it filters the interaction between compression and smoothness mixed in the expectation and
separates variance ωi of compression from smoothness matrix Li.
Remark 1 (Variance Reduction: ISEGA+). In Appendix N we apply our redesign to another variance
reduced method called ISEGA (Mishchenko et al., 2020; Hanzely & Richtárik, 2019b). At the core
of ISEGA, the mechanism for variance reduction is based on SEGA method (Hanzely et al., 2018).
The key difference between ISEGA and DIANA is that ISEGA updates the control variates h more
aggressively using projection instead of the mere α-step towards the projection used in DIANA.
Formally, adapting our matrix-smoothness-aware sparsification to ISEGA, we define the update rule
of control vectors hki as follows

hk+1
i = arg min

h∈Range(Li)

Ck
i L
†1/2
i ∇fi(xk)=Ck

i L
†1/2
i h

‖h− hki ‖2L†i = hki + L
1/2
i Diag(Pi)C

k
i L
†1/2
i (∇fi(xk)− hki).

On the other hand, notice that the update rule in DIANA+ has the form

hk+1
i = hki + αL

1/2
i Ck

i L
†1/2
i (∇fi(xk)− hki)

for some fixed scalar α > 0, and thus is more conservative. Note that we choose the gradient
estimator for ISEGA+ to be the same gki = hki + L

1/2
i Ck

i L
†1/2
i (∇fi(xk) − hki). The method is

presented as Algorithm 7 in Appendix N.

In contrast to DIANA+, we can not obtain the convergence rate of ISEGA+ directly from the
framework of Gorbunov et al. (2020a). Instead, to get the tight convergence rate, we shall cast it
as an instance of GJS method (Hanzely & Richtárik, 2019b). Theorem 23 provides the result – we
can see that the worst case complexity is identical to DIANA+. However, in terms of the practical
performance, we expect ISEGA+ to outperform DIANA+ due to the more aggressive update rule of
control variates.
Remark 2 (Variance Reduction with Bi-directional Compression: DIANA++). As an extension to
DIANA+, in Appendix O we apply our sparsification technique both for nodes and for the central
server, thus compressing gradients in both directions of communication. We develop and analyze
DIANA++ method (see Algorithm 8), for which the central server applies compression in its turn
with sketch C independently. To converge in a linear rate, DIANA++ maintains an additional control
vector, which helps to reduce the variance coming from the master’s sparsification. Theorem 24
provides complexity result for DIANA++, which recovers the same complexity (19) of DIANA+ if no
compression is applied by the master.

D.3 ACCELERATION WITH VARIANCE REDUCTION: ADIANA+

Finally, we redesign the accelerated method ADIANA (Li et al., 2020) to effectively exploit local
smoothness matrices.

The algorithm develops four sequences {xk, yk, zk, wk} of models, which are layered via convex
combinations, proximal steps and probabilistic assignments. In each iteration, nodes receive models

18

Published as a conference paper at ICLR 2021

xk and wk from the server, and send back sparse updates ∆k
i and δki using local data and control

vectors hki . Then, decompressing these sparse vectors with matrices Li, nodes update their shifts hki
and the server updates all four models along with averaged shift hk.

Algorithm 3 ADIANA+
1: Input: Initial points x0 = y0 = z0 = w0 ∈ Rd, initial shifts h0

i ∈ Range(Li), current point xk,
parameters γ, α, β, η, θ1, θ2, q, sketch Ck

i and Ck
i := L

1/2
i Ck

i L
†1/2
i , current shifts hk1 , · · · , hkn

and hk = 1
n

∑n
i=1 h

k
i

2: on server
3: xk = θ1z

k + θ2wk + (1− θ1 − θ2)yk

4: send xk and wk to all nodes
5: on each node
6: send sparse update ∆k

i = Ck
i L
†1/2
i (∇fi(xk)− hki)

7: send sparse update δki = Ck
i L
†1/2
i (∇fi(wk)− hki)

8: update local gradient ∆k
i = L

1/2
i ∆k

i , g
k
i = hki + ∆k

i

9: update local shift δki = L
1/2
i δki , h

k+1
i = hki + αδki

10: on server
11: get sparse updates ∆k

i and δki from each node
12: ∆k = 1

n

∑n
i=1 L

1/2
i ∆k

i , δ
k = 1

n

∑n
i=1 L

1/2
i δki

13: gk = ∆k + hk = 1
n

∑n
i=1 Ck

i

(
∇fi(xk)− hki

)
+ hki

14: hk+1 = hk + αδk

15: yk+1 = proxηR(xk − ηgk)

16: zk+1 = βzk + (1− β)xk + γ
η (yk+1 − xk)

17: wk+1 =

{
yk with probability q,

wk with probability 1− q.

Clearly, the new method ADIANA+ enjoys the accelerated rate, which is strictly better then the one
for DIANA+.

Theorem 5 (see L.5). Let Assumptions 2 and 3 hold and assume that each node generates its
own diagonal sketch Ci independently from others. Then, the iteration complexity of Algorithm 3
guaranteeing E

[
‖zk − x∗‖2

]
≤ ε is

Õ
(
ωmax +

√
ωmax

L̃max

µn

)
if nL ≤ L̃max

Õ

(
ωmax +

√
L
µ +

√
ωmax

√
L̃max

µn

√
L
µ

)
if nL > L̃max.

(20)

Proof technique. The additional difficulty that acceleration brings on top of variance reduction is
the modified term Hk := 1

n

∑n
i=1 ‖hki −∇fi(wk)‖2

L†i
controlling variance reduction process. The

subtlety of Hk in contrast to σk is gradients∇fi(wk) which are not fixed. Key technical part is to
reduce contracting property of Hk into upper bounding E[(I− αCi)

>L†i (I− αCi)] by (1− α)L†i
as quadratic forms in the subspace Range(Li).

E IMPROVEMENTS OVER THE ORIGINAL METHODS

To compare the proposed methods with originals and highlight improvement factors, we choose
independent sampling for all nodes. For Algorithms 1 and 2, we optimize probabilities of the
samplings based on the complexities we found.

19

Published as a conference paper at ICLR 2021

E.1 PARAMETERS DESCRIBING DISTRIBUTION OF Li

Define parameters ν and νs describing the distribution of local smoothness matrices Li as follows

ν :=

∑n
i=1 Li

maxi∈[n] Li
, νs := max

i∈[n]

∑d
j=1 L

1/s
i;j

maxj∈[d] L
1/s
i;j

, (21)

where Li = λmax(Li) and s = 1 or s = 2. Let Lmax := max1≤i≤n Li. Note that parameters
ν ∈ [1, n] and νs ∈ [1, d] describe the distribution over the nodes and coordinates respectively. If
Li are distributed uniformly, then ν = n and νs = d. On the other extreme, when the distribution
is extremely non-uniform, we have ν � n and νs � d. These parameters are used to highlight the
range of iteration complexities new methods can provide.

E.2 IMPORTANCE SAMPLING FOR DCGD+

Let τ = E [|Si|] =
∑d
j=1 pi;j be the expected mini-batch size for the samplings Si, where pi;j = pi;jj .

Notice that convergence rate of Algorithm 1 depends on L̃max = max1≤i≤n L̃i. Since each node
i ∈ [n] generates its own diagonal sketch Ci independently from others, each node can optimize
L̃i = λmax(P̃i ◦ Li) independently based on local smoothness matrix Li. In general, minimizing
λmax(P̃i ◦ Li) with respect to probability matrix P̃i is hard. However, when each node uses an
independent sampling, which means pi;jl = pi;jpi;l if j 6= l, then

λmax(P̃i ◦ Li) = max
1≤j≤d

(
1

pi;j
− 1

)
Li;j , (22)

for which we can find the optimal probabilities pi;j . To minimize the maximum term in (22), we
should have (1/pi;j − 1) Li;j = ρi for some ρi ≥ 0. Then the solution is

pi;j =
Li;j

Li;j + ρi
, (23)

where ρi ≥ 0 is the unique solution to
∑d
j=1

Li;j
Li;j+ρi

= τ . The latter does not allow closed form
solution for ρi. However, since ρi is the root of strictly monotone and one dimensional function, it
can be computed numerically using one dimensional solvers. Thus, we can efficiently compute the
optimal probabilities (23).
Proposition 6 (Optimality). The independent sampling with probabilities (23) is the optimal inde-
pendent sampling for the rate (17).
Remark 3 (Improvement over DCGD (Khirirat et al., 2018)). With probabilities (23) we show in
Appendix M.1 that

L

µ
+
L̃max

nµ
≤
(ν
n

+
ν1

τn

) Lmax

µ
. (24)

In the interpolation regime (i.e. ∇fi(x∗) = 0 for all i ∈ [n]), the iteration complexity of DCGD
is Õ(Lµ + ωLmax

nµ) for general compression operator with variance parameter ω. If we specialize
compression to sparsification with τ = d/n entries (which gives ω = d/τ − 1 = n − 1), we get
Õ(Lmax

µ). Notice that, in this regime, Theorem 3 also provides linear convergence with iteration

complexity Õ(Lµ + L̃max

nµ). Based on (24), it is bounded by Õ((νn + ν1
d)Lmax

µ), which is always

better than Õ(Lmax

µ) and can be as small as Õ(Lmax

min(n,d)µ). Hence, for mini-batch τ = d/n, DCGD+

(Algorithm 1) guarantees the same Õ(Lmax

µ) complexity in the worst case, but could provide up to
min(n, d) times speedup.

E.3 IMPORTANCE SAMPLING FOR DIANA+

To find optimal probabilities for DIANA+, we minimize ωmax + L̃max

µn part of the complexity (19).

Definitions of L̃max and ωmax imply that it is equivalent to minimize

max
1≤j≤d

(
1

pi;j
− 1

)
L′i;j , L′i;j :=

Li;j
µn

+ 1, (25)

20

Published as a conference paper at ICLR 2021

which can be solved in the same way as (22) yielding

pi;j =
L′i;j

L′i;j + ρ′i
=

Li;j + µn

Li;j + (1 + ρ′i)µn
. (26)

Proposition 7 (Optimality). The independent sampling with probabilities (26) is the optimal7 inde-
pendent sampling for the complexity (19).
Remark 4 (Improvement over DIANA (Mishchenko et al., 2019; Horváth et al., 2019b)). Here we
compare DIANA+ against the original DIANA method, which has iteration complexity Õ(n+ Lmax

µ)

when each node sparsifies with τ = d/n entries. With probabilities (26) we upper bound the complexity
(19) in Appendix M.2 as follows

ωmax +
L

µ
+
L̃max

µn
≤ 2d

τ
+

(
ν

n
+

2ν1

τn

)
Lmax

µ
. (27)

Therefore, with τ = d/n, DIANA+ (Algorithm 2) guarantees the same Õ(n+ Lmax

µ) complexity in

the worst case, but could provide up to min(n, d) times speedup with iteration complexity Õ(n +
Lmax

min(n,d)µ).

E.4 INDEPENDENT SAMPLING FOR ADIANA+

Clearly, if we sparsify with uniform probabilities pi;j = τ/d, then Algorithm 3 recovers the rate of
ADIANA.
Remark 5 (Improvement over ADIANA (Li et al., 2020)). To show that the rate could be significantly
better in some cases, consider the following choice

pi;j =

√
L′i;j

L′i;j + ρ′′i
, L′i;j =

Li;j
µn

+ 1, (28)

where ρ′′i is determined uniquely from
∑d
j=1 pi;j = τ . Then, with these probabilities and for

Lmax/µ = O(nd2), we show in Appendix M.3 that

L

µ
≤ νLmax

nµ
, ωmax = O

(
ν2d

τ

)
,
Lmax

µn
= O

(
ν2d

τ

√
Lmax

nµ

)
.

Furthermore, assuming both ν and ν2 are O(1), choosing τ = d/n we get

L

µ
≤ O

(
Lmax

nµ

)
, ωmax = O (n) ,

Lmax

µn
= O

(√
nLmax

µ

)
.

Then, the complexity (20) of ADIANA+ reduces ton+ n
(
Lmax

nµ

)1/4

if nL ≤ L̃max,

n+
√

Lmax

nµ +
(
nLmax

µ

)3/8

if nL > L̃max,

which, compared to the complexity of ADIANA with ω = O(n) compression, gives
√
d times

improvement in the first case and
√

min(n, d) times improvement in the second case (ignoring the
first summand n of the complexities).

F EXPERIMENTS

In this section we numerically compare the proposed matrix-smoothness-aware sparsification strategy
(14) with the usual sparsification scheme.

7In the sense that it minimizes a quantity, which is the complexity of DIANA+ up to some constant factor.

21

Published as a conference paper at ICLR 2021

F.1 EXPERIMENTAL SETUP

We devise three different experiments on logistic regression with LibSVM data (Chang & Lin, 2011).
In particular, the objective is given as

fi(x) :=
1

mi

mi∑
j=1

log (1 + exp ((Aim)j,:x · (bim)j)) +
µ

2
‖x‖2,

where Aim ∈ Rdim×d is the data matrix with corresponding labels bim ∈ Rdim . In our case, we did
split the randomly reshuffled datasets into equal chunks among workers in each case so that mi = mj

for all i, j ≤ n. The data matrix A was normalized so that each datapoint has a norm equal to 1
2 .

Lastly, we have chosen µ = 10−3 for all experiments.

For each of the datasets, we have selected a specific number of workers given by Table 4. Each of the
method was run with theory supported parameters with an exception of the ADIANA+, where we
have omitted several constant factors for the sake of practicality.

Table 4: Datasets.

Dataset # datapoints d n mi

a1a 1 605 123 107 15
mushrooms 8 124 112 12 677
phishing 11 055 68 11 1 005
madelon 2 000 500 4 500
duke 44 7 129 4 11
a8a 22 696 123 8 2837

F.2 VARIANCE REDUCTION WITH NEW SPARSIFICATION AND IMPORTANCE SAMPLING

We now comment on the experiment illustrated in Figure 2. We examine three sparsification schemes
(two variants of our strategy and the usual sparsification not aware of smoothness matrices) and
their influence on convergence using six different datasets. Considered schemes are i) DIANA+
with importance sampling (26), ii) DIANA+ with uniform sampling, and iii) DIANA with uniform
sampling, i.e., uniform sparsification unaware of smoothness matrices. In all three cases we fixed the
sampling size τ = 1.

As expected, Figure 2 confirms our theoretical findings. First, it demonstrates that our sparsifica-
tion (14) always outperforms the naive/direct sparsification, sometimes by a large margin. Second, it
shows the benefit of importance sampling (26) over the uniform sampling.

F.3 THE PROPOSED AND USUAL SPARSIFICATION TECHNIQUES FOR THE 3 DISTRIBUTED
METHODS

In the second experiment depicted in Figure 3, we compare six different methods: well-established
DCGD, DIANA, ADIANA and our methods DCGD+, DIANA+, ADIANA+, all with uniform
sampling for τ = 1. In order to highlight the importance of the variance reduction, in this experiment
we choose the starting point to be close to the optimum.

Figure 3 demonstrates the following: i) methods with matrix-aware sparsification (i.e., DCGD+,
DIANA+, ADIANA+) always outperform their baselines (i.e., DCGD, DIANA, ADIANA) ii) accel-
eration almost always outperforms the non-accelerated variant, often dramatically so and iii) variance
reduction never hurts the convergence, but often stabilizes the oscillation of the non-variance reduced
counterpart.

F.4 THE EFFECT OF SPARSIFICATION LEVEL τ ON THE CONVERGENCE RATE

In this experiment, we study the effect of sparsification level τ on the convergence rate. Informally
speaking, our theory suggests that the sparsification does not hurt the convergence rate unless τ is

22

Published as a conference paper at ICLR 2021

0 1000 2000 3000 4000 5000
Iteration

10 1

100

Re
la

tiv
e

su
bo

pt
im

al
ity a1a

importance+
uniform+
uniform

0 1000 2000 3000 4000 5000
Iteration

10 1

100

Re
la

tiv
e

su
bo

pt
im

al
ity duke

importance+
uniform+
uniform

0 1000 2000 3000 4000 5000
Iteration

100

7 × 10 1

8 × 10 1

9 × 10 1

Re
la

tiv
e

su
bo

pt
im

al
ity madelon

importance+
uniform+
uniform

0 1000 2000 3000 4000 5000
Iteration

10 3

10 2

10 1

100

Re
la

tiv
e

su
bo

pt
im

al
ity mushrooms

importance+
uniform+
uniform

0 1000 2000 3000 4000 5000
Iteration

10 3

10 2

10 1

100

Re
la

tiv
e

su
bo

pt
im

al
ity phishing

importance+
uniform+
uniform

0 1000 2000 3000 4000 5000
Iteration

10 2

10 1

100

Re
la

tiv
e

su
bo

pt
im

al
ity a8a

importance+
uniform+
uniform

Figure 2: Comparison of our sparsification strategy of size τ = 1 for DIANA+ (Algorithm 2) using
i) importance sampling with probabilities (26), ii) uniform sampling with pi = (1

d ,
1
d , . . .

1
d)> and iii)

DIANA (Mishchenko et al., 2019) using standard sparsification scheme with uniform sampling. All
methods are run with stepsizes as dictated by theory.

0 500 1000 1500 2000
Iteration

10 1

100

101

Re
la

tiv
e

su
bo

pt
im

al
ity a1a

ADIANA+
DIANA+
DCGD+
ADIANA
DIANA
DCGD

0 500 1000 1500 2000
Iteration

100

9 × 10 1

9.2 × 10 1

9.4 × 10 1

9.6 × 10 1

9.8 × 10 1

Re
la

tiv
e

su
bo

pt
im

al
ity duke

ADIANA+
DIANA+
DCGD+
ADIANA
DIANA
DCGD

0 500 1000 1500 2000
Iteration

100

6 × 10 1

Re
la

tiv
e

su
bo

pt
im

al
ity madelon

ADIANA+
DIANA+
DCGD+
ADIANA
DIANA
DCGD

0 500 1000 1500 2000
Iteration

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Re
la

tiv
e

su
bo

pt
im

al
ity mushrooms

ADIANA+
DIANA+
DCGD+
ADIANA
DIANA
DCGD

0 200 400 600 800 1000
Iteration

10 1

100

Re
la

tiv
e

su
bo

pt
im

al
ity phishing

ADIANA+
DIANA+
DCGD+
ADIANA
DIANA
DCGD

0 500 1000 1500 2000
Iteration

100

Re
la

tiv
e

su
bo

pt
im

al
ity a8a

ADIANA+
DIANA+
DCGD+
ADIANA
DIANA
DCGD

Figure 3: Comparison of the three original methods DCGD (Khirirat et al., 2018), DIANA
(Mishchenko et al., 2019) and ADIANA (Li et al., 2020) with the proposed new methods DCGD+
(Alg. 1), DIANA+ (Alg. 2) and ADIANA+ (Alg. 3). All six methods use uniform sampling with
single mini-batch size τ = 1.

smaller than some constant. The value of such constant depends on various factors such as the type
of sampling and the specific smoothness structure of the objective.

To contrast this with known results, Mishchenko et al. (2020) show that the sparsification does not
hurt ISEGA significantly (a method with sparsification unaware of smoothness matrix) as soon as
τn ≥ d. Addmitedly, Mishchenko et al. (2020) assume identical smoothness constants for both f
and fi, so such a conclusion is slightly imprecise. In our case, ignoring the ω̃max factor, the rate is
dominated by the sparsification factors only if L = O

(
L̃max

n

)
.

The results are presented in Fugure 4 (Iteration vs Residual) and Fugure 5 (Communication vs Resid-
ual). As expected, we see that the sparsification only hurts the iteration complexity when τ is below
certain treshold which is smaller for the uniform sampling compared to the importance sampling.
Consequently, DIANA+ is capable of significantly reducing the worker->server communication at no
cost in terms of the total iteration complexity.

23

Published as a conference paper at ICLR 2021

0 2000 4000 6000 8000 10000
Iteration

10 7

10 5

10 3

10 1

Re
la

tiv
e

su
bo

pt
im

al
ity

a1a

= 1, importance
= 8, importance
= 60, importance
= 1, uniform
= 8, uniform
= 60, uniform

0 2000 4000 6000 8000 10000
Iteration

10 8

10 6

10 4

10 2

100

Re
la

tiv
e

su
bo

pt
im

al
ity

duke

= 1, importance
= 8, importance
= 60, importance
= 1, uniform
= 8, uniform
= 60, uniform

0 2000 4000 6000 8000 10000
Iteration

10 2

10 1

100

Re
la

tiv
e

su
bo

pt
im

al
ity

madelon

= 1, importance
= 8, importance
= 60, importance
= 1, uniform
= 8, uniform
= 60, uniform

0 2000 4000 6000 8000 10000
Iteration

10 8

10 6

10 4

10 2

100

Re
la

tiv
e

su
bo

pt
im

al
ity

mushrooms
= 1, importance
= 8, importance
= 60, importance
= 1, uniform
= 8, uniform
= 60, uniform

0 2000 4000 6000 8000 10000
Iteration

10 8

10 6

10 4

10 2

100

Re
la

tiv
e

su
bo

pt
im

al
ity

phishing
= 1, importance
= 8, importance
= 60, importance
= 1, uniform
= 8, uniform
= 60, uniform

0 2000 4000 6000 8000 10000
Iteration

10 8

10 6

10 4

10 2

100

Re
la

tiv
e

su
bo

pt
im

al
ity

a8a

= 1, importance
= 8, importance
= 60, importance
= 1, uniform
= 8, uniform
= 60, uniform

Figure 4: Effect of τ on the convergence speed of DIANA+ (Algorithm 2).

0 2000 4000 6000 8000 10000
Coordinates sent to server

10 7

10 5

10 3

10 1

Re
la

tiv
e

su
bo

pt
im

al
ity

a1a

= 1, importance
= 8, importance
= 60, importance
= 1, uniform
= 8, uniform
= 60, uniform

0 2000 4000 6000 8000 10000
Coordinates sent to server

10 8

10 6

10 4

10 2

100

Re
la

tiv
e

su
bo

pt
im

al
ity

duke

= 1, importance
= 8, importance
= 60, importance
= 1, uniform
= 8, uniform
= 60, uniform

0 2000 4000 6000 8000 10000
Coordinates sent to server

10 2

10 1

100

Re
la

tiv
e

su
bo

pt
im

al
ity

madelon

= 1, importance
= 8, importance
= 60, importance
= 1, uniform
= 8, uniform
= 60, uniform

0 2000 4000 6000 8000 10000
Coordinates sent to server

10 8

10 6

10 4

10 2

100

Re
la

tiv
e

su
bo

pt
im

al
ity

mushrooms

= 1, importance
= 8, importance
= 60, importance
= 1, uniform
= 8, uniform
= 60, uniform

0 2000 4000 6000 8000 10000
Coordinates sent to server

10 8

10 6

10 4

10 2

100

Re
la

tiv
e

su
bo

pt
im

al
ity

phishing

= 1, importance
= 8, importance
= 60, importance
= 1, uniform
= 8, uniform
= 60, uniform

0 2000 4000 6000 8000 10000
Coordinates sent to server

10 8

10 6

10 4

10 2

100

Re
la

tiv
e

su
bo

pt
im

al
ity

a8a

= 1, importance
= 8, importance
= 60, importance
= 1, uniform
= 8, uniform
= 60, uniform

Figure 5: Same as Figure 4, but x-axis corresponds to the coordinates sent to the server instead of
the iteration.

G CONCLUSIONS, EXTENSIONS AND FUTURE WORK

In this paper we have proposed a novel gradient sparsification technique for distributed optimization
and demonstrated that it allows one to properly exploit the smoothness structure of the local objective.
We have shown that the proposed matrix-smoothness-aware sparsification can be coupled with both
the variance reduction and acceleration, providing further speedup in terms of the convergence rate
and the total bits transmitted from workers to server. Next, we list possible extensions of our work
that we believe can or should be done in the future:

• Subsampling the local objective. While DCGD+, DIANA+ and ADIANA+ all require an
access to the full local gradient from each machine at every iteration, we believe this require-
ment can be easily dropped. In particular, the local objective can be further subsampled and
extra variance reduction can be employed on top of these methods, similarly to as done for
ISAEGA (Hanzely & Richtárik, 2019b).

24

Published as a conference paper at ICLR 2021

• Greedy sparsification. Notice that the sparsified local gradient can be seen as a randomized
coordinate descent estimator of a given machine. However, greedy coordinate descent was
shown to outperform randomized coordinate descent in certain scenarios (Nutini et al.,
2017). Therefore, one might pose a question whether a greedy sparsification might work for
distributed optimization.
• Bi-directional sparsification. As we also mention in Section H, one drawback of our

approach8 is that only worker→server communication is sparse. It would be very interesting
to develop a bi-directional sparsification capable of properly exploiting the smoothness
matrices. For this matter, in Section O we develop and analyze DIANA++ method employing
bi-directional matrix-smoothness-aware sparsification and twofold variance reduction.
• Weakly convex and non-convex cases. While we state our theory for the strongly convex

case (i.e., Assumpiton 3), it can be rather easily extended to weakly convex case (i.e., µ = 0).
However, obtaining an efficiennt smoothness matrix aware sparsification for non-convex
optimization remains an open problem.

H LIMITATIONS

Next, we discuss main limitations of our approach.

• The server is required to store matrices L
1/2
i for all machines i ∈ [n] and multiply them by

sparse updates Ck
i L
†1/2
i ∇fi(xk) in each iteration. Therefore, our method is not expected

to be practical when d is large and matrices Li are not of a special structure so that they
are cheap to store and so that Ck

i L
†1/2
i ∇fi(xk) can be evaluated cheaply.9. On the other

hand, our strategy is still practical when i) d is small or ii) Li is of a special structure such
as low rank or diagonal. In particular, diagonal Li requires only O(τ) extra computation
per each node (which is negligible), while attaining a rate which is never worse compared to
the naive sparsification.
• Except DIANA++ method presented in Section O, we sparsify only the communication from

the workers to server. Sparsifying workers→server communication only is very common in
the area of distributed optimization as the workers→server communication is significantly
more expensive compared to the server→workers communication. Such a phenomenon can
be assigned to the fact that the server is broadcasting the same vector to all workers, and
thus the server→workers communication can be implemented more efficiently.

Remark 6. The overhead that comes from the computation of L
†1/2
i ∇fi(xk) is not an issue in general.

Given that Li is of rank r, one requires O
(
d2r
)

flops to precompute SVD of Li. Given that SVD of

Li is known, the evaluation of L
†1/2
i ∇fi(xk) takes only O

(
d2r
)

flops. While the cost of computing
∇fi(xk) varies depending on the application, we can expect it to takes at least Ω

(
d2r
)

flops for
the application of generalized linear models (i.e., logistic regression). Next, we shall mention that
evaluating L

†1/2
i ∇fi(xk) comes at O (d) cost when Li is diagonal.

8In fact, this is a drawback of the vast majority of compression methods from the literature. A notable
exception is DoubleSqueeze (Tang et al., 2019) which compresses the server→worker communication too.

9For example, if Li is of rank r, for all i, we require extra O(ndr) storage and O(ndr) flops at the server at
each iteration.

25

Published as a conference paper at ICLR 2021

I TABLE OF FREQUENTLY USED NOTATION

Table 5: Notation used throughout the paper

Symbol Description Reference

d dimension of the model x ∈ Rd (29)

µ strong convexity parameter of f Asm. 3

L smoothness matrix of f Asm. 2

Lij the element at ith row and jth column of L -

Li smoothness matrix of fi Asm. 2

Li smoothness constant of fi(x), i.e., Li = λmax(Li) -

L smoothness constant of f , i.e., L = λmax(L) -

S random sampling (subset) of coordinates [d] := {1, 2, . . . , d} -

pjl, pj pjl := Prob ({j, l} ⊆ S) , pj := pjj -

P the probability matrix (pjl)
d
j,l=1 associated with random sampling S (15)

vi ESO parameters associated with f and S jointly -

C diagonal sketch matrix with ith random variable ci = 1/pi if i ∈ S and 0 otherwise (13)

ω variance of general compression operator C, i.e. E
[
‖C(x)− x‖2

]
≤ ω‖x‖2, ∀x ∈ Rd -

C, Ck
i C := L1/2CL†1/2, Ck

i = L
1/2
i Ck

i L
†1/2
i -

I, E the identity matrix and the matrix with all entries equal to 1 -

P, P̃ P = Diag (1/p) PDiag (1/p) with entries pij =
pij
pipj

, and P̃ = P− E (15)

L, L̃ expected smoothness constants L = λmax(P ◦ L), L̃ = λmax(P̃ ◦ L) -

n number of parallel machines in distributed setting (8)

Ci,Pi,Pi, P̃i diagonal sketch matrix and probability matrices for ith worker (13), (15)

pi;j , pi;j , p̃i;j j-th diagonal element of Pi, Pi, P̃i -

ωi variance of compression operator induced by Ci, i.e. ωi = max1≤j≤d
1
pi;j
− 1 -

ωmax max1≤i≤n ωi = max1≤i≤n max1≤j≤d
1
pi;j
− 1 (19)

Li, L̃i expected smoothness constants, Li = λmax(Pi ◦ Li), L̃i = λmax(P̃i ◦ Li) -

Lmax, L̃max Lmax = max1≤i≤n λmax(Pi ◦ Li), L̃max = max1≤i≤n λmax(P̃i ◦ Li) (16)

ν, νs Parameters describing distribution of Li, ν :=
∑n
i=1 Li

maxi∈[n] Li
, νs := maxi∈[n]

∑d
j=1 L

1/s
i;j

maxj∈[d] L
1/s
i;j

, (21)

26

Published as a conference paper at ICLR 2021

J THEORY IN THE SINGLE NODE CASE: RCD AS SKETCHED GRADIENT
DESCENT (SKGD)

In single node setup, matrix smoothness assumption and arbitrary samplings have been considered
mainly in the context of coordinate descent methods. For example, randomized sampling S =
{j}, j ∈ [d] with arbitrary probabilities pj ∈ (0, 1] reduces to standard Randomized Coordinate
Descent (RCD) algorithms (Nesterov, 2012; Richtárik & Takáč, 2014). Parallel and mini-batch
variants arise when the sampling S contains more than one coordinate (Bradley et al., 2011; Richtárik
& Takáč, 2016b). The first coordinate descent method analyzed with arbitrary sampling and under
L-smoothness assumption is the ’NSync algorithm (Richtárik & Takáč, 2016a; Qu & Richtárik,
2016a;b) considered for strongly convex losses. In the same general setup, Hanzely & Richtárik
(2019a) developed and analyzed Accelerated Coordinate Descent. Recently, Hanzely et al. (2018)
developed a variance reduced coordinate descent algorithm, SEGA (SkEtched GrAdient), which uses
general sketch matrices and handles non-separable proximal terms in contrast to traditional coordinate
descent methods. This idea of gradient sketching then extended to Generalized Jacobian Sketching
(GJS) algorithm providing a unified theory for first-order methods with variance reduced (Hanzely &
Richtárik, 2019b).

Consider the unconstrained optimization problem

min
x∈Rd

f(x), (29)

with very large dimension d and assume that function f is L-smooth. In this setting, the state-of-art
methods are Randomized Coordinate Descent (RCD) type methods where in each iteration only a few
coordinates get updated. Here we present new theories for RCD with arbitrary sampling paradigm,
which are new and follow the idea of sketches. We will view RCD as a special case of Compressed
Gradient Descent (CGD) with sketches (13).

J.1 ‘NSYNC

First, we recall the first coordinate descent type algorithm, ‘NSync (Richtárik & Takáč, 2016a),
using arbitrary sampling. Let S ⊆ [d] be an arbitrary (proper) sampling10 of coordinates such that
pj := Prob(j ∈ S) > 0, j = 1, 2, . . . , d. For a vector h ∈ Rd, let hS ∈ Rd be the vector coinciding
with h at coordinates j ∈ S and zeros everywhere else. Denote by ◦ the Hadamard (i.e. element-wise)
product. Given an arbitrary sampling S and smoothness matrix L, let v = (v1, v2, . . . , vd) be positive
constants satisfying the Expected Separable Overapproximation (ESO) inequality

P ◦ L � Diag(p ◦ v), (30)

where P is the probability matrix associated with sampling S having entries pjl := Prob({j, l} ⊆
S), pj = pjj . Analogous to (15), let P̃ = P−E.

Algorithm 4 ‘NSYNC (RICHTÁRIK & TAKÁČ, 2016A)
1: Input: Initial point x0 ∈ Rd, random sampling S, step size parameters v, current point xk
2: Sample random set of coordinates Sk ∼ S
3: Update selected coordinates xk+1 = xk − 1

v ◦ ∇f(x)Sk

Theorem 8 (‘NSync, (Richtárik & Takáč, 2016a)). Let Assumptions 2, 3 hold and v ∼ ESO(f, S)
be the vector of ESO parameters associated with function f and sampling S. Then the iterates {xk}
of ‘NSync converge as follows

E
[
f(xk)

]
− f(x∗) ≤

(
1− min

1≤j≤d

pjµ

vj

)k
∆f ,

where ∆f = f(x0)− f(x∗).

10only proper samplings are considered in this work

27

Published as a conference paper at ICLR 2021

Thus, ‘Nsync gives an iteration complexity

max
1≤j≤d

vj
pjµ

log
∆f

ε
. (31)

In case of serial sampling, namely |S| = 1 a.s., we have P = Diag(p1, p2, . . . , pd). Hence ESO
holds with vj = Ljj and iteration complexity becomes maxj

Ljj
pjµ

log
∆f

ε . This leads to the optimal

probabilities pj =
Ljj∑
l Lll

yielding iteration complexity
∑

Ljj
µ log

∆f

ε .

J.2 SKETCHED GRADIENT DESCENT (SKGD)

Let us view RCD methods as a special case of Compressed Gradient Descent (CGD) with linear
and diagonal sketch C defined in (13) and consider random sparsification operator C induced by
random diagonal sketch C, namely C(x) = Cx, x ∈ Rd. Clearly, C is an unbiased compression (i.e.
E [C(x)] = x) with variance ω = max1≤j≤d

1
pj
− 1:

E
[
‖Cx− x‖22

]
= x>E

[
C2 − I

]
x ≤ ω‖x‖22. (32)

Algorithm 5 SKGD
1: Input: Initial point x0 ∈ Rd, diagonal sketch C, step size γ, current point xk
2: xk+1 = xk − γC∇f(xk)

Theorem 9 (see L.1). Let Assumptions 2, 3 hold and S be any proper sampling with probability
matrix P. Then, for the step-size 0 < γ ≤ λ−1

max

(
P ◦ L

)
, the iterates {xk} of Algorithm 5 converge

as follows
E
[
f(xk)

]
− f(x∗) ≤ (1− γµ)

k
∆f .

The following lemma shows that, both ‘NSync and SkGD provide the same theoretical guarantees.
Lemma 10.

min
v : P◦L≤Diag(v◦p)

max
1≤j≤d

vj
pj

= λmax

(
P ◦ L

)
.

Proof. If parameters v satisfy ESO inequality (30), then parameters defined by

v′i := pi max
j

vj
pj
≥ vi, 1 ≤ i ≤ d

also satisfy ESO inequality and give the same iteration complexity as

λ := max
i

vi
pi

= max
i

v′i
pi
.

In particular, this implies that instead of searching for d parameters v1, . . . , vd satisfying ESO
inequality P ◦L ≤ Diag(v ◦ p) it suffices to find one scalar λ > 0 such that P ◦L ≤ Diag(λp ◦ p)
and set vi = λpi for all i ∈ [d]. The optimal (smallest) value of the scaling factor is

λ = λmax (Diag(1/p)(P ◦ L)Diag(1/p)) = λmax ((Diag(1/p)PDiag(1/p)) ◦ L) = λmax

(
P ◦ L

)
.

Notice that with the choice of v = λp, iteration complexities as well as the update rules of both
methods coincide.

One difference between these two methods is that, the update direction 1
v ◦ ∇f(x)S of ‘NSync is

biased in general as opposed to unbiased direction 1
p ◦ ∇f(x)S of SkGD.

Note that the rate and the analysis of Theorem 9 is with respect to functional values (i.e. f(xk)− f∗).
Natural question is to develop an analysis based on iterates of the algorithm (i.e. ‖xk − x∗‖2).
Below, we provide such analysis under slightly different conditions on f and with weighted distances.
Formally, let, instead of L-smoothness and µ-convexity, assume

µ‖x− x∗‖2L + ‖∇f(x)‖2 ≤ 2〈∇f(x), (x− x∗)〉L. (33)

28

Published as a conference paper at ICLR 2021

Notice that the following is true just by combining L-smoothness and µ-convexity:

µ‖x− x∗‖2 + ‖∇f(x)‖2L† ≤ 2〈∇f(x), (x− x∗)〉. (34)

However, in general, inequalities (33) and (34) are not equivalent.
Theorem 11. Let instead of L-smoothness and µ-convexity assume (33) holds. Then, for the step-size
0 < γ ≤ λ−1

max

(
P ◦ L

)
, the iterates {xk} of Algorithm 5 converge as follows

E
[
‖xk − x∗‖2L

]
≤ (1− γµ)

k ‖x0 − x∗‖2L.

Proof. Consider the improvement of the algorithm in a single iteration x+ = x− γC∇f(x).

E
[
‖x+ − x∗‖2L

]
= E

[
‖x− x∗ − γC∇f(x)‖2L

]
= ‖x− x∗‖2L − 2γ〈x− x∗,∇f(x)〉L + γ2E

[
‖C∇f(x)‖2L

]
= ‖x− x∗‖2L − 2γ〈x− x∗,∇f(x)〉L + γ2‖∇f(x)‖2E[CLC]

(45)
= ‖x− x∗‖2L − 2γ〈x− x∗,∇f(x)〉L + γ2‖∇f(x)‖2

P◦L

≤ ‖x− x∗‖2L − 2γ〈x− x∗,∇f(x)〉L + γ2λmax(P ◦ L)‖∇f(x)‖2

≤ ‖x− x∗‖2L − 2γ〈x− x∗,∇f(x)〉L + γ‖∇f(x)‖2
(33)

≤ (1− γµ) ‖x− x∗‖2L.

J.3 CGD+

Here we introduce a new variant of CGD with non-diagonal matrix C := L1/2CL†1/2, which works
with any proximable regularizer R(x). In this case the method converges to the neighborhood of the
solution. Recall that the proximal operator is defined as followsL:

proxR(x) = arg min
u∈Rd

(
R(u) +

1

2
‖u− x‖2

)
. (35)

Define expected smoothness constants

L = λmax(P ◦ L), L̃ = λmax(P̃ ◦ L).

The following lemma reveals the relationship between these constants.

Lemma 12. Let L = λmax(L). Then L ≤ L ≤ L+ L̃.

Proof. First, positive semi-definiteness of P was proved in Theorem 3.1 (Qu & Richtárik, 2016).
As Diag(1/p) is positive definite, then P is positive semi-definite too. Since Hadamard product ◦
preserves positive semi-definiteness, we have that P ◦ L � 0. It follows from Lemma 18 that

E
[
L

1/2
(
C− I

)> (
C− I

)
L

1/2
]

= L
1/2L†

1/2(P̃ ◦ L)L†
1/2L

1/2.

Hence the left hand side as well as P̃ ◦ L are symmetric and positive semidefinite. In particular,
P ◦L � L. Hence L = λmax(L) ≤ λmax(P ◦L) = L. The upper bound follows from the convexity
of λmax as L = λmax(P ◦ L) = λmax(L + P̃ ◦ L) ≤ λmax(L) + λmax(P̃ ◦ L) = L+ L̃.

Algorithm 6 CGD+

1: Input: Initial point x0 ∈ Rd, sketch matrix C = L1/2CL†1/2, step size γ, current point xk

2: xk+1 = proxγR
(
xk − γC∇f(xk)

)
With the new sketch C in Algorithm 6 we able to perform the analysis with respect to iterates in
standard norm, under strong convexity and L-smoothness, allowing any proximable regularizer.

29

Published as a conference paper at ICLR 2021

Table 6: Original and proposed new methods for both single node and distributed setups.

ORIGINAL ‘NSYNC CGD DCGD DIANA ADIANA

NEW SKGD
(ALG.5)

CGD+
(ALG.6)

DCGD+
(ALG.1)

DIANA+
(ALG.2)

ADIANA+
(ALG.3)

PROXIMAL 7 3 3 3 3
DISTRIBUTED 7 7 3 3 3

VARIANCE REDUCED 7 7 7 3 3
ACCELERATED 7 7 7 7 3

Table 7: Complexity of new methods with hidden log factors and constants.

Method Iteration Complexity

SkGD (Algorithm 5) L
µ

CGD+ (Algorithm 6) L
µ + L̃

µ2ε

DCGD+ (Algorithm 1) L
µ + L̃max

µn + L̃max

µ2nε

DIANA+ (Algorithm 2) ωmax + L
µ + L̃max

µn

ADIANA+ (Algorithm 3)


ωmax +

√
ωmax

L̃max

µn if nL ≤ L̃max

ωmax +
√

L
µ +

√
ωmax

√
L̃max

µn

√
L
µ if nL > L̃max.

Theorem 13 (see L.2). Let Assumptions 2, 3 hold and S be a sampling with probability matrix P.
Then, for the step-size 0 < γ ≤ 1/2L, the iterates {xk} of Algorithm 6 converge as follows

E
[
‖xk − x∗‖2

]
≤ (1− γµ)

k ‖x0 − x∗‖2 +
2γL̃
µ
‖∇f(x∗)‖2L† .

30

Published as a conference paper at ICLR 2021

K LOWER BOUNDS FOR SKETCHES AS LINEAR COMPRESSION OPERATORS

Here we investigate general sketch matrices S as a linear compression operators. The motivation
of this is to understand the trade-off between communication and variance of linear compressors.
The notation, used in this section only, slightly deviates from the paper but otherwise is consistent
throughout the section.

Consider compression of vectors x ∈ Rd allowing approximation error in exchange for less bits
of communication. Let compression operator C : Rd → Rd be composed of some linear encoder
E(x) = Sxwith s×d sketch matrix S and an arbitrary decoderD : Rs → Rd, so that C(x) = D(Sx).
Throughout we consider the space Rd equipped with an inner product together with its induced norm
given by some symmetric and positive definite matrix B of size d× d as follows

〈x, y〉B = x>By, ‖x‖B =
√
〈x, x〉B, x, y ∈ Rd.

In general, we let matrix S, number of rows s and decoder D to be random, while the matrix B will
be fixed throughout the analysis. Since we consider only linear encoders, we may assume ‖x‖B = 1.

K.1 FIXED SKETCHES

We first analyze the case where the sketch matrix S is fixed and hence the compression operator
C is deterministic. The analysis then we will lead us on a more usefull result for random sketches.
The decoder D receiving vector y = Sx should be able to reconstruct x̂ = D(y) so to minimize the
squared error

α(S) := sup
‖x‖B=1

‖C(x)− x‖2B = sup
‖x‖B=1

‖D(Sx)− x‖2B ≤ 1.

The following lemma shows the optimal strategy for the decoder and possible values for α(S).
Lemma 14. For a fixed sketch S the optimal reconstruction from y = Sx is

D∗(y) = S†By ≡ B−1S>
(
SB−1S>

)†
y, (36)

where ·† indicates the Moore–Penrose inverse of a matrix. Furthermore, if ker(S) = {0} then
α(S) = 0 as in this case D∗(Sx) = x for any x ∈ Rd. Otherwise, if ker(S) 6= {0}, then α(S) = 1.

Proof. Let ker(S) = {z : Sz = 0} be the kernel of S and x†B = S†By be the minimal B-norm
solution to the system Sz = y so that the set of all solutions is x†B + ker(S):

x†B = arg min
x : Sx=y

‖x‖2B = S†By = B−
1/2
(
SB−

1/2
)†
y,

Denote by
Ŝ(x) :=

(
x†B + ker(S)

)
∩ {z ∈ Rd : ‖z‖B = 1}

the intersection of the affine set of solutions and the unit sphere. Notice that initial vector x ∈ Ŝ(x)
as it has unit B-norm and satisfies Sx = y. Now the cost of sending Sx instead of original x, is the
uncertainty that the decoder has to deal with by estimating the original vector within the set Ŝ so to
minimize α. We first show that xS := 2x†B − x ∈ Ŝ(x), which is equivalent to

x†B − x ∈ ker(S) and ‖2x†B − x‖2B = 1.

The first claim follows from the fact that both x and x†B are solutions to Sz = y, namely Sx†B =
y = Sx. Expanding the square in the second claim we get

〈
x†B , x†B − x

〉
B

= 0 which holds as x†B
is the minimal B-norm solution. Therefore the vector y the decoder receives does not differentiate
between x and xS . This implies that for any choice of x̂ of the decoder

max
(
‖x̂− x‖2B, ‖x̂− xS‖2B

)
≥ 1

4

(
‖x̂− x‖B + ‖x̂− xS‖B

)2 ≥ 1
4‖x

S − x‖2B = ‖x†B − x‖2B
squared-error is unavoidable for the couple x, xS and the optimal choice is x̂ = x†B . Thus, the
optimal decoding strategy to y = Sx is D∗(y) = x†B given in (36). Now, if ker(S) 6= {0} then we
could pick the initial vector x from the kernel space, i.e. x ∈ ker(S) and ‖x‖B = 1. Then we would
have x†B = 0 and hence the minimal squared-error α(S) = 1. On the other hand, if ker(S) = {0},
then x†B = x as the system Sz = y has unique solution.

31

Published as a conference paper at ICLR 2021

To conclude for fixed sketches, notice that, x and xS are in symmetry in this analysis. Indeed, if the
initial vector was xS as opposed to x, then Sx = SxS , hence xS†B = x†B and xSS = x. Therefore,
the analysis of Lemma 14 leads to the following lower bound for any decoder D and initial vector
x ∈ Rd

max
z=x,xS

‖C(z)− z‖2B ≥ ‖x†B − x‖2B = 1− ‖x†B‖2B = 1− ‖Zx‖2B, (37)

where we used orthogonality
〈
x†B , x†B − x

〉
B

= 0 and defined the random matrix Z = Z(S) via

Z := S†BS = B−
1/2
(
SB−

1/2
)†

S = B−1S>
(
SB−1S>

)†
S.

K.2 RANDOM SKETCHES

Now we turn to the general case when sketch matrix S is random and drawn from some distribution
D, to which both encoder and decoder have access. The number of rows s of S can also be random. In
this case, the decoder D upon receiving random vector y = Sx should estimate possibly randomized
x̂ = D(y) so to minimize the expected square error

α(D) := sup
‖x‖B=1

E
[
‖C(x)− x‖2B

]
≤ 1, (38)

where C(x) = D(Sx) is a random mapping with a source of randomness coming from the distribution
D and decoder D. Below we prove a lower bound for α(D).
Theorem 15. Let D be some distribution over s× d matrices S allowing variable number of rows
s ∈ [d]. Then for any (possibly randomized) compression operator C(x) = D(Sx) with i.i.d. samples
S ∼ D and x ∈ Rd the following lower bound holds

α(D) + ED [r/d] ≥ 1, (39)

where r = rank(S) is the number of independent rows in S.

Proof. Based on the lower bound (37) obtained from the deterministic case, decoder cannot avoid
the error 1− ‖Zx‖2B even in the case of knowing what sketch the encoder used. Therefore minimal
expected error 1− ES∼D‖Zx‖2B is unavoidable for any initial x. This leads to the following bound

1− α(D) ≤ inf
‖x‖B=1

ED
[
‖Zx‖2B

]
= inf

‖x‖B=1
ED
[
x>Z>BZx

]
z=B

1/2x
= inf

‖z‖=1
ED
[
z>B−

1/2Z>BZB−
1/2z
]

= inf
‖z‖=1

z>ED
[
B−

1/2Z>BZB−
1/2
]
z

= λmin

(
ED
[
B−

1/2Z>BZB−
1/2
])

= λmin

(
ED
[
B−1Z>BZ

])
= λmin

(
ED
[
B−1S>

(
SB−1S>

)†
S
])

= λmin (ED [Z]) ,

where the expectation is with respect to S ∼ D. Thus, we obtained the following lower bound:

α(D) + λmin

(
ED
[
S†BS

])
≥ 1. (40)

To prove the inequality (39), it is enough to establish the following upper bound for the minimal
eigenvalue

λmin (ED [Z]) ≤ ED [r/d] .

We follow the proof of Lemma 4.2 of Gower & Richtárik (2015) to prove this inequality. It can be
easily checked that, using the properties of pseudo-inverse, Z = S†BS is an idempotent matrix for
any S, namely Z2 = Z. This implies that all eigenvalues of Z are either 0 or 1 as they must satisfy

32

Published as a conference paper at ICLR 2021

the same relation λ2 = λ. Trace tr(Z) of such matrices coincides with the number of non-zero
eigenvalues, which also shows the rank:

tr(Z) =

d∑
i=1

λi (Z) = #{i ∈ [d] : λi (Z) 6= 0} = rank(Z). (41)

From the properties of pseudo-inverse it follows that rank(A†A) = rank(A†) = rank(A) for any
matrix A. Hence

rank(Z) = rank(S†BS) = rank

(
B−

1/2
(
SB−

1/2
)†

S

)
= rank

((
SB−

1/2
)†

SB−
1/2

)
= rank

(
SB−

1/2
)

= rank (S) = r.

Combining with (41) we get tr(Z) = r. The purpose of expressing the rank as a trace is that in
contrast to rank, trace and expectation operators are commutative, which basically follows from the
linearity of the expectation:

tr (ED[Z]) = ED [tr(Z)] . (42)
Using (41), (42) and tr(Z) = r, we conclude

λmin (ED [Z]) ≤ 1

d

d∑
i=1

λi (ED [Z]) =
tr (ED [Z])

d
=

ED [tr (Z)]

d
=

ED[r]

d
,

which completes the proof.

K.3 OPTIMAL SKETCHES

With the knowledge of this new lower bound, here we construct a distribution D of sketches that
will achieve equality in (39). Let B = QΛQ> be the eigendecomposition of the symmetric matrix
B, where Λ is diagonal with eigenvalues and Q is orthogonal with eigenvectors as columns. Let
C be the diagonal sketch of size d × d corresponding to random sparsification with probabilities
p = (pi)

d
i=1, namely

C = Diag(c), ci =

{
1 with prob. pi,

0 with prob. 1− pi.
Define a distribution D = Dp of sketches as S = CQ> and notice that

ED [rank(S)] = ED [rank(C)] = ED [#{i ∈ [d] : ci = 1}] = ED

[
d∑
i=1

ci

]
=

d∑
i=1

ED [ci] =

d∑
i=1

pi.

Therefore, ED [r/d] = 1
d

∑
pi. With decoder D(x) = Qx we get a compression operator C(x) =

QSx. Next, we compute α(D) as follows
α(D) = sup

‖x‖B=1

E
[
‖C(x)− x‖2B

]
= sup

‖x‖B=1

E
[
‖QSx− x‖2B

]
= sup

x>Bx=1

E
[
x>(I−QS)>B(I−QS)x

]
= sup

x>QCQ>x=1

x>E
[
(I−QCQ>)B(I−QCQ>)

]
x

= sup
(Q>x)>Λ(Q>x)

(Q>x)>E
[
(I−C)Q>BQ(I−C)

]
(Q>x)

y=Q>x
= sup

y>Λy=1

y>E [(I−C)Λ(I−C)] y

= sup
y>Λy=1

(Λ
1/2y)>E

[
(I−C)2

]
(Λ

1/2y)

z=Λ
1/2y

= sup
‖z‖=1

z> ·Diag(1− p) · z

= max
1≤i≤d

(1− pi) = 1− min
1≤i≤d

pi.

33

Published as a conference paper at ICLR 2021

Hence

1 ≤ α(D) + ED [r/d] = 1− min
1≤i≤d

pi +
1

d

d∑
i=1

pi,

and equality occurs if and only if all probabilities pi are equal to some q ∈ [0, 1]. Thus, the
optimal sketches are obtained by rotating the coordinate basis to the basis of eigenvectors of Q
(i.e. x → Q>x), and then randomly sparsify coordinates with diagonal sketch matrix C (i.e.
Q>x→ CQ>x = Sx). We summarize this result in the following theorem.
Theorem 16. Let B = QΛQ> be the eigendecomposition of B of induced norm, q ∈ [0, 1] and
C be random diagonal sketch corresponding to the random q-sparsifer. Then sketches S = CQ>

are optimal with respect to variance against rank trade-off (39) with squared error α = 1− q and
expected rank E[r] = qd.

K.4 RANDOM SKETCHES WITH LINEAR CONSTRAINTS

In this part we extend the theory of compressing vectors x ∈ Rd with an additional linear constraint
x ∈ Range(A) for some d× d′ matrix A. Such scenarios occur when to-be-compressed vectors are
the gradients of f(w) = φ(A>w), for which∇f(w) = A∇φ(A>w) ∈ Range(A). Without loss of
generality, we may assume that A is of full column rank and consequently d′ = dim Range(A) =
rank(A). The constraint x ∈ Range(A) then can be equivalently written as x = Ax′ for some
x′ ∈ Rd′ . The induced inner product and norm on Range(A) is then given by the matrix A>BA as

〈x, y〉B = 〈Ax′,Ay′〉B = 〈x′, y′〉A>BA , x = Ax′, y = Ay′.

Notice that, since Sx = SAx′, communication of x ∈ Rd with sketches S reduces to communication
of x′ ∈ Rd′ with sketches SA. Thus, the additional constraint x ∈ Range(A) ⊂ Rd reduces the
problem to lower d′-dimension with sketches SA,S ∼ D and norm induced by A>BA.

K.5 VARIANCE AGAINST COMMUNICATION TRADE-OFF

The obtained lower bound (39) can be easily translated in terms of the number of bits. Assuming
each float takes 32 bits to encode and there is no redundant row in S (i.e. s = r), then Sx ∈ Rr can
be communicated with up to b = 32r bits. Therefore, the lower bound (39) can be written as

α+
E [b]

32d
≥ 1, (43)

which (ignoring the expectation) is exponentially stronger than the lower bound α · 4b/d ≥ 1 obtained
for general compressors in (Safaryan et al., 2020). We visualize the comparison of these two lower
bounds in Figure 6. Furthermore, denote by β := E [b] /32d the expected communication reduction
factor and recall that α is the portion of the expected lost of information. With this notation the above
lower bound (43) turns to the following simple inequality

α+ β ≥ 1,

showing the trade-off between information lost and communication reduction for linear compressors;
namely more reduction in communication leads to bigger information loss and vice versa. In one
extreme, when all 32d bits are sent, no reduction in communication is made (β = 1) and no
information is lost (α = 0). In other extreme, when no bits gets transferred (β = 0) we loose all
information (α = 1).

To conclude this section, let us investigate the optimality of random q-sparsifier with respect to the
lower bound (43). Recall that random q-sparsifier is optimal with respect to (39). Let q ∈ (0, 1), and
k be the (random) number of non-zero entries of sparsified vector. Clearly, E [k] = qd and to encode
any k-sparse vector one needs b = 32k + log2

(
d
k

)
bits. As we know from Theorem 16, the squared

error α = 1− q. Therefore

α+β = 1− q+ 1
32dE

[
32k + log2

(
d
k

)]
= 1 + 1

32dE
[
log2

(
d
k

)]
≤ 1 + 1

32E
[
H2

(
k
d

)]
≤ 1 + H2(q)

32 .

The first inequality follows from the following estimate (only upper bound) for binomial coefficients

2dH2(τ)√
8dτ(1− τ)

≤
(
d

τd

)
≤ 2dH2(τ)√

2πdτ(1− τ)
, 0 < τ < 1,

34

Published as a conference paper at ICLR 2021

where H2(τ) = −τ log2 τ − (1− τ) log2(1− τ) is the binary entropy function in bits. The second
inequality follows from concavity H2 function and the Jensen’s inequality. Because of the symmetry
around τ = 1/2 (namely H2(1− τ) = H2(τ)) and concavity of the function H2, one can show that
the maximum is achieved at τ = 1/2 and H2(1/2) = 1. Thus, in the worst case we have α+β ≤ 33/32

upper bound, when roughly half of the entries are chosen uniformly at random. For other values of q,
it is even closer to the optimum; numerically H2 (τ) ≈ (4τ (1− τ))

3/4
, 0 ≤ τ ≤ 1.

0 4 8 12 16 20 24 28 32
bits per coordinate

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
iz

ed
 v

ar
ia

nc
e

General UP
Linear UP

Random-k
Top-k

Figure 6: Comparison of general uncertainty principle α · 4b/d ≥ 1 (dashed red line) of Safaryan
et al. (2020) against the new linear version (43) (dashed blue line). Each color represents one
compression method: yellow for usual random sparsification with uniform probabilities and orange
for greedy sparsification (a.k.a Top-k sparsification). Each triangle marker indicates one particular
d = 103 dimensional vector randomly generated from Gaussian distribution, which subsequently
gets compressed by the compression operator mentioned in the legend.

35

Published as a conference paper at ICLR 2021

L PROOFS

L.1 PROOF OF THEOREM 9

Using smoothness of f , we have
Ef(xk+1) = Ef(xk − γC∇f(xk))

≤ f(xk)− γ
〈
∇f(xk),E

[
C∇f(xk)

]〉
+
γ2

2
E
[
‖C∇f(xk)‖2L

]
= f(xk)− γ‖∇f(xk)‖2 +

γ2

2
‖∇f(xk)‖2E[CLC]

≤ f(xk)− γ (2− γλmax (E [CLC])) · 1

2
‖∇f(xk)‖2.

(44)

Computing the expectation inside, we get

E [CLC] = E
[
(cicjLij)

d
i,j=1

]
=

(
pijLij
pipj

)d
i,j=1

= (Diag(1/p)PDiag(1/p)) ◦L = P ◦L. (45)

Therefore, using the bound for the step size γ and strong convexity of f , we get

E
[
f(xk+1)− f(x∗)

]
≤
(
f(xk)− f(x∗)

)
− γ

(
2− γλmax

(
P ◦ L

))
· 1

2
‖∇f(xk)‖2

≤
(
f(xk)− f(x∗)

)
− γ

2
‖∇f(xk)‖2

≤ (1− γµ)
(
f(xk)− f(x∗)

)
,

(46)

repeated application of which completes the proof.

L.2 PROOF OF THEOREM 13

The following lemmas will be useful to handle the computation with pseudo-inverses.
Lemma 17 (Lemma E.2 and E.3 (Hanzely & Richtárik, 2019b)). If f is convex and L-smooth, then
for any x, y ∈ Rd

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
1

2
‖∇f(x)−∇f(y)‖2L† . (47)

If, in addition, f is bounded below, then∇f(x) ∈ Range(L†) = Range(L) for all x ∈ Rd.
Lemma 18. With C = L1/2CL†1/2, the following holds

E
[
L

1/2
(
C− I

)> (
C− I

)
L

1/2
]

= L
1/2L†

1/2
(
P̃ ◦ L

)
L†

1/2L
1/2. (48)

Proof. Using the property L1/2L†1/2L1/2 = L1/2 of pseudoinverse, we have

E
[
L

1/2
(
C− I

)> (
C− I

)
L

1/2
]

= E
[
L

1/2
(
L†

1/2CL
1/2 − I

)(
L

1/2CL†
1/2 − I

)
L

1/2
]

= E
[
L

1/2
(
L†

1/2CLCL†
1/2 − L†

1/2CL
1/2 − L

1/2CL†
1/2 + I

)
L

1/2
]

(45)
= L

1/2
(
L†

1/2
(
P ◦ L

)
L†

1/2 − L†
1/2L

1/2 − L
1/2L†

1/2 + I
)

L
1/2

= L
1/2
(
L†

1/2
(
P ◦ L

)
L†

1/2 − L†
1/2LL†

1/2
)

L
1/2

+L
1/2
(
L†

1/2LL†
1/2 − L†

1/2

L
1/2 − L

1/2L†
1/2

+ I
)

L
1/2

= L
1/2L†

1/2
(
P ◦ L− L

)
L†

1/2L
1/2 + L

1/2
(
I− L†

1/2L
1/2
)(

I− L
1/2L†

1/2
)

L
1/2

= L
1/2L†

1/2
(
P̃ ◦ L

)
L†

1/2L
1/2 +

(
L

1/2 − L
1/2L†

1/2L
1/2
)(

L
1/2 − L

1/2L†
1/2L

1/2
)

= L
1/2L†

1/2
(
P̃ ◦ L

)
L†

1/2L
1/2.

36

Published as a conference paper at ICLR 2021

For convenience we skip iteration count k, and write x, x+ instead of xk, xk+1. Using non-
expansiveness of the prox operator we get

E
[
‖x+ − x∗‖2

]
≤ E

[
‖x− x∗ − γ

(
L

1/2CL†
1/2
)
∇f(x) + γ∇f(x∗)‖2

]
= ‖x− x∗‖2 − 2γ〈x− x∗,∇f(x)−∇f(x∗)〉+ γ2E

[
‖
(
L

1/2CL†
1/2
)
∇f(x)−∇f(x∗)‖2

]
≤ ‖x− x∗‖2 − 2γ〈x− x∗,∇f(x)−∇f(x∗)〉

+2γ2E
[
‖L1/2CL†

1/2 (∇f(x)−∇f(x∗)) ‖2
]

+ 2γ2E
[
‖
(
L

1/2CL†
1/2 − I

)
∇f(x∗)‖2

]
≤ ‖x− x∗‖2 − 2γ〈x− x∗,∇f(x)−∇f(x∗)〉

+2γ2λmax(E [CLC])‖L†1/2 (∇f(x)−∇f(x∗)) ‖2 + 2γ2E
[
‖
(
L

1/2CL†
1/2 − I

)
∇f(x∗)‖2

]
(45),(49)

≤ ‖x− x∗‖2 − 2γ〈x− x∗,∇f(x)−∇f(x∗)〉
+2γ2λmax(P ◦ L)‖∇f(x)−∇f(x∗)‖2L† + 2γ2λmax(P̃ ◦ L)‖∇f(x∗)‖2L†

= ‖x− x∗‖2 − 2γ〈x− x∗,∇f(x)−∇f(x∗)〉+ 2γ2L‖∇f(x)−∇f(x∗)‖2L† + 2γ2L̃‖∇f(x∗)‖2L† ,

where we used E [CLC] = P ◦L based on (45) and for the last term we used Lemma 17 to represent
∇f(x∗) = L1/2g∗ and then applied Lemma 18

E
[∥∥∥(L

1/2CL†
1/2 − I

)
∇f(x∗)

∥∥∥2
]

= E
[
g>∗ L

1/2
(
L†

1/2CL
1/2 − I

)(
L

1/2CL†
1/2 − I

)
L

1/2g∗

]
= ∇f(x∗)>

(
L†

1/2
(
P̃ ◦ L

)
L†

1/2
)
∇f(x∗)

≤ λmax(P̃ ◦ L)‖∇f(x∗)‖2L† .
(49)

Using the bound on step size γ ≤ 1/2L̃, strong convexity of f and (47), we continue as follows

E
[
‖x+ − x∗‖2

]
≤ ‖x− x∗‖2 − γ〈x− x∗,∇f(x)−∇f(x∗)〉

−γ
(
〈x− x∗,∇f(x)−∇f(x∗)〉 − ‖∇f(x)−∇f(x∗)‖2L†

)
+2γ2L̃‖∇f(x∗)‖2L†

(47)

≤ (1− γµ) ‖x− x∗‖2 + 2γ2L̃‖∇f(x∗)‖2L† .

Telescoping the above inequality, we complete the proof.

L.3 PROOF OF THEOREM 3

In this proof we skip the iteration count k to simplify the notation. Define

Mi := L
1/2
i E

[
(Ci − I)>(Ci − I)

]
L

1/2
i

(48)
= L

1/2
i L

†1/2
i (P̃i ◦ Li)L

†1/2
i L

1/2
i

= L
1/2
i L

†1/2
i (Pi ◦ Li − Li)L

†1/2
i L

1/2
i

= L
1/2
i L

†1/2
i (Pi ◦ Li)L

†1/2
i L

1/2
i − L

1/2
i L

†1/2
i LiL

†1/2
i L

1/2
i

= L
1/2
i L

†1/2
i (Pi ◦ Li)L

†1/2
i L

1/2
i − Li

= L
1/2
i

(
E
[
C>i Ci

]
− I
)
L

1/2
i . (50)

37

Published as a conference paper at ICLR 2021

We are going to estimate the moment E
[
‖g(x)−∇f(x∗)‖2

]
and show the following bound for the

gradient estimator g(x) = 1
n

∑n
i=1 Ci∇fi(x) (see line 5 of Algorithm 1):

E
[
‖g(x)−∇f(x∗)‖2

]
≤ 2

(
L+

2L̃
n

)
Df (x, x∗) +

2σ∗

n
.

Due to Lemma 17, we have∇fi(x) = L
1/2
i ri for some ri. Therefore

E
[
Ci∇fi(x)

]
= E

[
L

1/2
i CiL

†1/2
i L

1/2
i ri

]
= L

1/2
i L

†1/2
i L

1/2
i ri = L

1/2
i ri = ∇fi(x), (51)

which implies unbiasedness of the estimator g(x), namely E [g(x)] = ∇f(x). Next, note that

E
[
‖g(x)−∇f(x∗)‖2

]
= E

∥∥∥∥∥ 1

n

n∑
i=1

Ci∇fi(x)−∇f(x∗)

∥∥∥∥∥
2


=
1

n2

n∑
i=1

E
[∥∥Ci∇fi(x)−∇f(x∗)

∥∥2
]

+
1

n2

∑
i 6=j

E
〈
Ci∇fi(x)−∇f(x∗),Cj∇fj(x)−∇f(x∗)

〉
=

1

n2

n∑
i=1

E
[∥∥Ci∇fi(x)

∥∥2
]

+ ‖∇f(x∗)‖2 − 2E
〈
Ci∇fi(x),∇f(x∗)

〉
+

1

n2

∑
i6=j

〈∇fi(x)−∇f(x∗),∇fj(x)−∇f(x∗)〉

=
1

n2

n∑
i=1

‖∇fi(x)‖2E[C>i Ci] + ‖∇f(x∗)‖2 − 2 〈∇fi(x),∇f(x∗)〉

+ ‖∇f(x)−∇f(x∗)‖2 − 1

n2

n∑
i=1

‖∇fi(x)−∇f(x∗)‖2

=
1

n2

n∑
i=1

∥∥∥L1/2
i ri

∥∥∥2

E[C>i Ci]−I
+

1

n2

n∑
i=1

‖∇fi(x)‖2 + ‖∇f(x∗)‖2 − 2 〈∇fi(x),∇f(x∗)〉

+ ‖∇f(x)−∇f(x∗)‖2 − 1

n2

n∑
i=1

‖∇fi(x)−∇f(x∗)‖2

= ‖∇f(x)−∇f(x∗)‖2 +
1

n2

n∑
i=1

‖ri‖2Mi

= ‖∇f(x)−∇f(x∗)‖2 +
1

n2

n∑
i=1

‖ri‖2L1/2
i L

†1/2
i (P̃i◦Li)L†

1/2
i L

1/2
i

= ‖∇f(x)−∇f(x∗)‖2 +
1

n2

n∑
i=1

∥∥∥L†1/2i ∇fi(x)
∥∥∥2

P̃i◦Li
,

which gives as the following decomposition

E
[
‖g(x)−∇f(x∗)‖2

]
= ‖∇f(x)−∇f(x∗)‖2 +

1

n2

n∑
i=1

∥∥∥L†1/2i ∇fi(x)
∥∥∥2

P̃i◦Li
. (52)

38

Published as a conference paper at ICLR 2021

For the first term it can be bounded using convexity and smoothness of f , namely ‖∇f(x) −
∇f(x∗)‖2 ≤ 2LDf (x, x∗). For the second term we proceed as follows

1

n2

n∑
i=1

∥∥∥L†1/2i ∇fi(x)
∥∥∥2

P̃i◦Li
≤ 1

n2

n∑
i=1

λmax(P̃i ◦ Li)‖L†
1/2
i ∇fi(x)‖2

=
1

n2

n∑
i=1

L̃i‖∇fi(x)‖2
L†i

≤ 2

n2

n∑
i=1

L̃i‖∇fi(x)−∇fi(x∗)‖2L†i +
2

n2

n∑
i=1

L̃i‖∇fi(x∗)‖2L†i

≤ 2

n2

n∑
i=1

2L̃iDfi(x, x
∗) +

2σ∗

n

=
4L̃max

n
Df (x, x∗) +

2σ∗

n
.

(53)

Combining these two estimates, we get

E
[
‖g(x)−∇f(x∗)‖2

]
≤ 2

(
L+

2L̃max

n

)
Df (x, x∗) +

2σ∗

n
.

It remains to apply the result of Gorbunov et al. (2020a).

L.4 PROOF OF THEOREM 4

First, we show the unbiasedness of the estimator g(xk). In (51), we showed unbiasedness of
Ck
i∇fi(xk) using inclusion ∇fi(xk) ∈ Range(Li). Assume for a moment that we also have

hki ∈ Range(Li). Hence, in the same way we can show Ek
[
Ck
i h

k
i

]
= hki , which implies the

unbiasedness of gk as

Ek
[
gk
]

=
1

n

n∑
i=1

Ek
[
Ck
i∇fi(xk)

]
− Ek

[
Ck
i h

k
i

]
+ hki =

1

n

n∑
i=1

∇fi(xk) = ∇f(xk).

The inclusion hki ∈ Range(Li) follows from the initialization h0
i ∈ Range(Li) (see line 1 of

Algorithm 2) and linear update rule of hk+1
i = hki + αL

1/2
i ∆k

i (see line 5 of Algorithm 2). As both
∇fi(xk) and hki belong to Range(Li), denote ∇fi(xk)− hki = L

1/2
i rki . Next we bound

39

Published as a conference paper at ICLR 2021

E
[
‖gk −∇f(x∗)‖2

]
= ‖∇f(xk)−∇f(x∗)‖2 + E

[
‖gk −∇f(xk)‖2

]
≤ 2LDf (xk, x∗) + E

∥∥∥∥∥ 1

n

n∑
i=1

Ck
i (∇fi(xk)− hki) + hki −∇fi(xk)

∥∥∥∥∥
2


= 2LDf (xk, x∗) +
1

n2

n∑
i=1

E
[∥∥∥(Ck

i − I)L
1/2
i rki

∥∥∥2
]

= 2LDf (xk, x∗) +
1

n2

n∑
i=1

∥∥rki ∥∥2

E
[
L

1/2
i (Ck

i−I)>(Ck
i−I)L

1/2
i

]
(50)
= 2LDf (xk, x∗) +

1

n2

n∑
i=1

∥∥rki ∥∥2

L
1/2
i L

†1/2
i (P̃i◦Li)L†

1/2
i L

1/2
i

= 2LDf (xk, x∗) +
1

n2

n∑
i=1

∥∥∥L†1/2i (∇fi(xk)− hki)
∥∥∥2

P̃i◦Li

≤ 2LDf (xk, x∗) +
L̃max

n2

n∑
i=1

∥∥∇fi(xk)− hki
∥∥2

L†i

≤ 2LDf (xk, x∗) +
2L̃max

n2

n∑
i=1

∥∥∇fi(xk)− fi(x∗)
∥∥2

L†i
+

2L̃max

n2

n∑
i=1

∥∥hki −∇fi(x∗)∥∥2

L†i

≤ 2LDf (xk, x∗) +
4L̃max

n
Df (xk, x∗) +

2L̃max

n2

n∑
i=1

∥∥hki −∇fi(x∗)∥∥2

L†i

= 2

(
L+

2L̃max

n

)
Df (xk, x∗) +

2L̃max

n2

n∑
i=1

∥∥hki −∇fi(x∗)∥∥2

L†i

(54)

Then we deduce a recurrence relation for the last term σk := 1
n

∑n
i=1

∥∥hki −∇fi(x∗)∥∥2

L†i
. For that

we will need the following bounds

0 � L
1/2
i L†iL

1/2
i � I, (55)

which can be proved via SVD and eigenvalue decompositions. Since Li is square, symmetric and
positive semidefinite, we know that singular value decomposition and eigenvalue decompositions
are the same. Let L

1/2
i = UiDiU

>
i , where Di is diagonal and Ui is orthogonal so that U>i = U−1

i .
Then

L
1/2
i L†iL

1/2
i = UiDiU

>
i UiD

†2
i U>i UiDiU

>
i = Ui

(
DiD

†2
i Di

)
U>i = Ui

(
DiD

†
i

)
U>i ,

which can admit eigenvalues only in [0, 1] since the matrix DiD
†
i is diagonal with entries either 0 or

1. Denote

ωi = λmax

(
E
[
(Ck

i)2
])
− 1 = max

1≤j≤d

1

pi;j
− 1. (56)

40

Published as a conference paper at ICLR 2021

and bound each summand of σk+1 as follows

Ek
[∥∥hk+1

i −∇fi(x∗)
∥∥2

L†i

]
= Ek

[∥∥hki −∇fi(x∗) + α∆k
i

∥∥2

L†i

]
=
∥∥hki −∇fi(x∗)∥∥2

L†i
+ 2α

〈
hki −∇fi(x∗),∇fi(xk)− hki

〉
L†i

+ α2E
[∥∥Ck

i (∇fi(xk)− hki)
∥∥2

L†i

]
=
∥∥hki −∇fi(x∗)∥∥2

L†i
+ 2α

〈
hki −∇fi(x∗),∇fi(xk)− hki

〉
L†i

+ α2
∥∥∇fi(xk)− hki

∥∥2

E[(Ck
i)>L†iC

k
i]

≤
∥∥hki −∇fi(x∗)∥∥2

L†i
+ 2α

〈
hki −∇fi(x∗),∇fi(xk)− hki

〉
L†i

+ α2
∥∥∇fi(xk)− hki

∥∥2

L
†1/2
i E[(Ck

i)2]L†
1/2
i

≤
∥∥hki −∇fi(x∗)∥∥2

L†i
+ 2α

〈
hki −∇fi(x∗),∇fi(xk)− hki

〉
L†i

+ α2(1 + ωi)
∥∥∇fi(xk)− hki

∥∥2

L†i

≤
∥∥hki −∇fi(x∗)∥∥2

L†i
+ 2α

〈
hki −∇fi(x∗),∇fi(xk)− hki

〉
L†i

+ α
∥∥∇fi(xk)− hki

∥∥2

L†i

≤ (1− α)
∥∥hki −∇fi(x∗)∥∥2

L†i
+ α

∥∥∇fi(xk)−∇fi(x∗)
∥∥2

L†i
,

where we used bounds α ≤ 1
1+ωi

and

E
[
(Ck

i)>L†iC
k
i

]
= L

†1/2
i E

[
Ck
i L

1/2
i L†iL

1/2
i Ck

i

]
L
†1/2
i � L

†1/2
i E

[
(Ck

i)2
]
L
†1/2
i .

Therefore

Ek
[
σk+1

]
=

1

n

n∑
i=1

Ek
[∥∥hk+1

i −∇fi(x∗)
∥∥2

L†i

]
≤ 1− α

n

n∑
i=1

∥∥hki −∇fi(x∗)∥∥2

L†i
+
α

n

n∑
i=1

∥∥∇fi(xk)−∇fi(x∗)
∥∥2

L†i

≤ (1− α)σk +
2α

n

n∑
i=1

Dfi(x
k, x∗)

= (1− α)σk + 2αDf (xk, x∗).

Thus, with α ≤ 1
1+ωmax

, the estimator gk of Algorithm 2 satisfies

Ek
[
gk
]

= ∇f(xk)

Ek
[
‖gk −∇f(x∗)‖2

]
≤ 2

(
L+

2L̃max

n

)
Df (xk, x∗) +

2L̃max

n
σk

Ek
[
σk+1

]
≤ (1− α)σk + 2αDf (xk, x∗).

It remains to apply Theorem 4.1 (Gorbunov et al., 2020a) with parameters A = L+ 2
n L̃max, B =

2
n L̃max, ρ = α, C = α and M = 4

αn L̃max, A+ CM = L+ 6
n L̃max, 1 + B

M − ρ = 1− α
2 .

L.5 PROOF OF THEOREM 5

Following the analysis of Li et al. (2020), define

Zk := ‖zk − x∗‖2, Y k := F (yk)− F (x∗), W k := F (wk)− F (x∗),

Hk :=
1

n

n∑
i=1

‖∇fi(wk)− hki ‖2L†i .

41

Published as a conference paper at ICLR 2021

Lemma 19 (Lemma 2, (Li et al., 2020)). Let η ≤ 1
2L , θ1 ≤ 1

4 , θ2 = 1
2 , γ = η

2(θ1+ηµ) and
β = 1− γµ. Then

E
[
Zk+1

]
+

2γβ

θ1
E
[
Y k+1

]
≤βZk + (1− θ1 − θ2)

2γβ

θ1
Y k + 2γβ

θ2

θ1
W k +

γη

θ1
E
[
‖gk −∇f(xk)‖2

]
− γ

4nθ1

n∑
i=1

‖∇fi(wk)−∇fi(xk)‖2
L†i
− γ

8nθ1

n∑
i=1

‖∇fi(yk)−∇fi(xk)‖2
L†i
.

Proof. Proof is the same as for the original lemma except we use Li-smoothness of fi via (47).

fi(u) ≥ fi(xk) +
〈
∇fi(xk), u− xk

〉
+

1

2
‖∇fi(u)−∇fi(xk)‖2

L†i
.

Lemma 20 (Lemma 3, (Li et al., 2020)).

E
[
W k+1

]
= (1− q)W k + qY k.

Lemma 21 (Lemma 4, (Li et al., 2020)).

E
[
‖gk −∇f(xk)‖2

]
≤ 2L̃max

n2

n∑
i=1

‖∇fi(wk)−∇fi(xk)‖2
L†i

+
2L̃max

n
Hk.

Proof. Let ∇fi(xk)− hki = L
1/2
i rki . Then

E
[
‖gk −∇f(xk)‖2

]
= E

∥∥∥∥∥ 1

n

n∑
i=1

Ck
i (∇fi(xk)− hki)− (∇fi(xk)− hki)

∥∥∥∥∥
2


=
1

n2
E

∥∥∥∥∥
n∑
i=1

(Ck
i − I)(∇fi(xk)− hki)

∥∥∥∥∥
2
 =

1

n2

n∑
i=1

E
[∥∥∥(Ck

i − I)L
1/2
i rki

∥∥∥2
]

=
1

n2

n∑
i=1

∥∥rki ∥∥2

L
1/2
i E[(Ck

i−I)>(Ck
i−I)]L

1/2
i

(50)
=

1

n2

n∑
i=1

∥∥rki ∥∥2

L
1/2
i L

†1/2
i (P̃i◦Li)L†

1/2
i L

1/2
i

=
1

n2

n∑
i=1

∥∥∥L†1/2i (∇fi(xk)− hki)
∥∥∥2

P̃i◦Li
≤ L̃max

n2

n∑
i=1

∥∥∇fi(xk)− hki
∥∥2

L†i

≤ 2L̃max

n2

n∑
i=1

∥∥∇fi(xk)−∇fi(wk)
∥∥2

L†i
+

2L̃max

n2

n∑
i=1

∥∥∇fi(wk)− hki
∥∥2

L†i
.

Lemma 22 (Lemma 5, (Li et al., 2020)). If α ≤ 1
1+ωmax

, where ωmax = max1≤i≤n ωi and ωi =

max1≤j≤d
1
pi;j
− 1, then

E
[
Hk+1

]
≤
(

1− α

2

)
Hk+

(
1 +

2q

α

)
2q

n

(
n∑
i=1

‖∇fi(wk)−∇fi(xk)‖2
L†i

+

n∑
i=1

‖∇fi(wk)−∇fi(xk)‖2
L†i

)
.

42

Published as a conference paper at ICLR 2021

Proof. We start bounding the summands of Hk+1. Let ∇fi(wk)− hki = L
1/2
i rki .

Ek
[∥∥∇fi(wk+1)− hk+1

i

∥∥2

L†i

]
= qEk

[∥∥∇fi(yk)− hk+1
i

∥∥2

L†i

]
+ (1− q)Ek

[∥∥∇fi(wk)− hk+1
i

∥∥2

L†i

]
≤ q

(
1 +

2q

α

)∥∥∇fi(wk)−∇fi(yk)
∥∥2

L†i
+

(
1− q +

(
1 +

α

2q

)
q

)
E
[∥∥∇fi(wk)− hk+1

i

∥∥2

L†i

]
= q

(
1 +

2q

α

)∥∥∇fi(wk)−∇fi(yk)
∥∥2

L†i
+
(

1 +
α

2

)
E
[∥∥∇fi(wk)− hk+1

i

∥∥2

L†i

]
= q

(
1 +

2q

α

)∥∥∇fi(wk)−∇fi(yk)
∥∥2

L†i
+
(

1 +
α

2

)
E
[∥∥(I− αCk

i)(∇fi(wk)− hki)
∥∥2

L†i

]
= q

(
1 +

2q

α

)∥∥∇fi(wk)−∇fi(yk)
∥∥2

L†i
+
(

1 +
α

2

)∥∥rki ∥∥2

L
1/2
i E[(I−αCk

i)>L†i (I−αCk
i)]L

1/2
i

.

Next, we simplify the matrix of the second term.

L
1/2
i E

[
(I− αCk

i)>L†i (I− αCk
i)
]

L
1/2
i

= E
[
L

1/2
i (I− αL

†1/2
i Ck

i L
1/2
i)L†i (I− αL

1/2
i Ck

i L
†1/2
i)L

1/2
i

]
= E

[
(L

1/2
i − αL

1/2
i L

†1/2
i Ck

i L
1/2
i)L†i (L

1/2
i − αL

1/2
i Ck

i L
†1/2
i L

1/2
i)
]

= E
[
L

1/2
i L†iL

1/2
i − αL

1/2
i L†iL

1/2
i Ck

i L
†1/2
i L

1/2
i

− αL
1/2
i L

†1/2
i Ck

i L
1/2
i L†iL

1/2
i + α2L

1/2
i L

†1/2
i Ck

i L
1/2
i L†iL

1/2
i Ck

i L
†1/2
i L

1/2
i

]
(55)

� E
[
L

1/2
i L†iL

1/2
i − αL

1/2
i L†iL

1/2
i Ck

i L
†1/2
i L

1/2
i

− αL
1/2
i L

†1/2
i Ck

i L
1/2
i L†iL

1/2
i + α2L

1/2
i L

†1/2
i (Ck

i)2L
†1/2
i L

1/2
i

]
= L

1/2
i L†iL

1/2
i − αL

1/2
i L†iL

1/2
i L

†1/2
i L

1/2
i − αL

1/2
i L

†1/2
i L

1/2
i L†iL

1/2
i + α2L

1/2
i L

†1/2
i E

[
(Ck

i)2
]
L
†1/2
i L

1/2
i

(56)

� L
1/2
i L†iL

1/2
i − 2αL

1/2
i L†iL

1/2
i + α2(ωi + 1)L

1/2
i L

†1/2
i L

†1/2
i L

1/2
i

= (1− 2α+ α2(ωi + 1))L
1/2
i L†iL

1/2
i

� (1− α)L
1/2
i L†iL

1/2
i ,

where in the last step we make use of the bound α ≤ 1
1+ωmax

= min1≤i≤n
1

1+ωi
. Then we finish the

recurrence as follows

Ek
[∥∥∇fi(wk+1)− hk+1

i

∥∥2

L†i

]
≤ q

(
1 +

2q

α

)∥∥∇fi(wk)−∇fi(yk)
∥∥2

L†i
+
(

1 +
α

2

)∥∥rki ∥∥2

L
1/2
i E[(I−αCk

i)>L†i (I−αCk
i)]L

1/2
i

≤ q
(

1 +
2q

α

)∥∥∇fi(wk)−∇fi(yk)
∥∥2

L†i
+
(

1 +
α

2

)
(1− α)

∥∥rki ∥∥2

L
1/2
i L†iL

1/2
i

= q

(
1 +

2q

α

)∥∥∇fi(wk)−∇fi(yk)
∥∥2

L†i
+
(

1 +
α

2

)
(1− α)

∥∥∇fi(wk)− hki
∥∥2

L†i

≤ 2q

(
1 +

2q

α

)(∥∥∇fi(wk)−∇fi(xk)
∥∥2

L†i
+
∥∥∇fi(yk)−∇fi(xk)

∥∥2

L†i

)
+
(

1− α

2

)∥∥∇fi(wk)− hki
∥∥2

L†i
.

Averaging over i ∈ [n] completes the proof.

43

Published as a conference paper at ICLR 2021

Proof of Theorem 5. Using the 4 lemmas above and θ1 ≤ 1
4 , θ2 = 1

2 , the Lyapunov function Ψk+1

admits the following recurrence

E
[
Ψk+1

]
:= E

[
Zk+1 +

2γβ

θ1
Y k+1 + 2γβ

θ2(1 + θ1)

θ1q
W k+1 +

8γηL̃max

αθ1n
Hk+1

]
Lemma 19
≤ βZk + (1− θ1 − θ2)

2γβ

θ1
Y k + 2γβ

θ2

θ1
W k +

γη

θ1
E
[
‖gk −∇f(xk)‖2

]
− γ

4nθ1

n∑
i=1

‖∇fi(wk)−∇fi(xk)‖2
L†i
− γ

8nθ1

n∑
i=1

‖∇fi(yk)−∇fi(xk)‖2
L†i

+ E

[
2γβ

θ2(1 + θ1)

θ1q
W k+1 +

8γηL̃max

αθ1n
Hk+1

]
Lemma 20

= βZk + (1− θ1 − θ2)
2γβ

θ1
Y k + 2γβ

θ2

θ1
W k +

γη

θ1
E
[
‖gk −∇f(xk)‖2

]
− γ

4nθ1

n∑
i=1

‖∇fi(wk)−∇fi(xk)‖2
L†i
− γ

8nθ1

n∑
i=1

‖∇fi(yk)−∇fi(xk)‖2
L†i

+ 2γβ
θ2(1 + θ1)

θ1q
(1− q)W k + 2γβ

θ2(1 + θ1)

θ1
Y k + E

[
8γηL̃max

αθ1n
Hk+1

]

≤ βZk +

(
1− θ1

2

)
2γβ

θ1
Y k +

(
1− θ1q

2

)
2γβ

θ2(1 + θ1)

θ1q
W k

− γ

4nθ1

n∑
i=1

‖∇fi(wk)−∇fi(xk)‖2
L†i
− γ

8nθ1

n∑
i=1

‖∇fi(yk)−∇fi(xk)‖2
L†i

+
γη

θ1
E
[
‖gk −∇f(xk)‖2

]
+ E

[
8γηL̃max

αθ1n
Hk+1

]
Lemma 21
≤ βZk +

(
1− θ1

2

)
2γβ

θ1
Y k +

(
1− θ1q

2

)
2γβ

θ2(1 + θ1)

θ1q
W k

− γ

4nθ1

n∑
i=1

‖∇fi(wk)−∇fi(xk)‖2
L†i
− γ

8nθ1

n∑
i=1

‖∇fi(yk)−∇fi(xk)‖2
L†i

+
2γηL̃max

θ1n2
‖∇fi(wk)−∇fi(xk)‖2

L†i
+

2γηL̃max

θ1n
Hk + E

[
8γηL̃max

αθ1n
Hk+1

]
Lemma 22
≤ βZk +

(
1− θ1

2

)
2γβ

θ1
Y k +

(
1− θ1q

2

)
2γβ

θ2(1 + θ1)

θ1q
W k

− γ

4nθ1

n∑
i=1

‖∇fi(wk)−∇fi(xk)‖2
L†i
− γ

8nθ1

n∑
i=1

‖∇fi(yk)−∇fi(xk)‖2
L†i

+
2γηL̃max

θ1n2
‖∇fi(wk)−∇fi(xk)‖2

L†i
+

2γηL̃max

θ1n
Hk +

8γηL̃max

αθ1n

(
1− α

2

)
Hk

+

(
1 +

2q

α

)
16γηL̃maxq

αθ1n2

(
n∑
i=1

‖∇fi(wk)−∇fi(xk)‖2
L†i

+

n∑
i=1

‖∇fi(yk)−∇fi(xk)‖2
L†i

)

= βZk +

(
1− θ1

2

)
2γβ

θ1
Y k +

(
1− θ1q

2

)
2γβ

θ2(1 + θ1)

θ1q
W k +

(
1− α

4

) 8γηL̃max

αθ1n
Hk

− γ

nθ1

(
1

8
− 2ηL̃max

n

)
n∑
i=1

‖∇fi(wk)−∇fi(xk)‖2
L†i

− γ

nθ1

(
1

8
−
(

1 +
2q

α

)
16ηL̃maxq

αn

)(
n∑
i=1

‖∇fi(wk)−∇fi(xk)‖2
L†i

+

n∑
i=1

‖∇fi(yk)−∇fi(xk)‖2
L†i

)
.

44

Published as a conference paper at ICLR 2021

To make the last two lines disappear from the recurrence, we need to make sure

1

8
− 2ηL̃max

n
≥ 0 and

1

8
−
(

1 +
2q

α

)
16ηL̃maxq

αn
≥ 0,

or equivalently

η ≤ n

16L̃max

and η ≤ n

64L̃max

· 1
2q
α

(
2q
α + 1

) .
Since α ≤ 1

ωmax+1 (see Lemma 22) and we also need to have η ≤ 1
2L (see Lemma 19), we can set

η = min

(
1

2L
,

n

64L̃max (2q(ωmax + 1) + 1)
2

)
.

Therefore

E
[
Ψk+1

]
≤ βZk +

(
1− θ1

2

)
2γβ

θ1
Y k +

(
1− θ1q

2

)
2γβ

θ2(1 + θ1)

θ1q
W k +

(
1− α

4

) 8γηL̃max

αθ1n
Hk

≤
(

1− ηµ

4θ1

)
Zk +

(
1− θ1

2

)
2γβ

θ1
Y k +

(
1− θ1q

2

)
2γβ

θ2(1 + θ1)

θ1q
W k +

(
1− α

4

) 8γηL̃max

αθ1n
Hk

≤
(

1−min

{
α

4
,
q

8
,

√
ηµq

4

})
Ψk,

where we set γ = η
2(θ1+ηµ) , β = 1 − γµ ≤ 1 − ηµ

4θ1
due to ηµ ≤ θ1, and θ1 = min

{
1
4 ,
√

ηµ
q

}
.

After telescoping we get an ε-solution E
[
‖zk − x∗‖2

]
≤ ε after

max

4(1 + ωmax),
8

q
, 4

√√√√ 2

µq
max

(
L,

32L̃max (2q(ωmax + 1) + 1)
2

n

) log
Ψ0

ε

iterations. Choosing q = min

{
1,

max
(

1,
√

nL

32L̃max
−1
)

2(1+ωmax)

}
we can simplify the above iteration com-

plexity into

k =



Õ
(
ωmax +

√
L̃max(1+ωmax)

µn

)
if nL ≤ 128L̃max

Õ

(
1 + ωmax +

√
1+ωmax√

n

√
L̃maxL
µ

)
if 128L̃max < nL ≤ 32L̃max(2ωmax + 3)2

Õ
(
ωmax +

√
L
µ

)
if 32L̃max(2ωmax + 3)2 < nL.

Combining last two cases concludes the proof.

45

Published as a conference paper at ICLR 2021

M IMPROVEMENTS OVER THE ORIGINAL METHODS

In this part we provide detailed derivations skipped in Section E. Recall parameters ν, νs describing
the distribution of matrices Li:

ν :=

∑n
i=1 Li

max
1≤i≤n

Li
, νs := max

1≤i≤n

∑d
j=1 L

1/s
i;j

max
1≤j≤d

L
1/s
i;j

, (57)

where Li = λmax(Li) and we will choose s = 1 or s = 2. Let Lmax = max1≤i≤n Li.

M.1 IMPORTANCE SAMPLING FOR DCGD+

Let τ = E [|Si|] =
∑d
j=1 pi;j be the expected mini-batch size for the samplings Si. Notice that

convergence rate of DCGD+ depends on L̃max = max1≤i≤n L̃i. Since each node i ∈ [n] generates
its own diagonal sketch Ci independently from others, each node can optimize L̃i = λmax(P̃i ◦ Li)

independently based on local smoothness matrix Li. In general, minimizing λmax(P̃i ◦ Li) with
respect to probability matrix P̃i is hard. However, we can find the optimal probabilities when each
node generates via an independent sampling, namely pi;jl = pi;jpi;l if j 6= l. Then

λmax(P̃i ◦ Li) = max
1≤j≤d

(
1

pi;j
− 1

)
Li;j , (58)

for which we can find the optimal probabilities pi;j . To minimize the maximum term in (58), we
should have (1/pi;j − 1) Li;j = ρi for some ρi ≥ 0. Then the solution is

pi;j =
Li;j

Li;j + ρi
, (59)

where ρi ≥ 0 is the unique solution to
∑d
j=1

Li;j
Li;j+ρi

= τ . The latter does not allow closed form
solution for ρi, but it can be computed numerically using one dimensional solvers. Hence, we can
efficiently compute the optimal probabilities (59). Moreover, we can deduce a simple upper bound
for ρi

τ =

d∑
j=1

Li;j
Li;j + ρi

≤
d∑
j=1

Li;j
ρi

=
1

ρi

d∑
j=1

Li;j , (60)

which gives us an upper bound for L̃i as follows

L̃i = λmax(P̃i ◦ Li) = ρi ≤
1

τ

d∑
j=1

Li;j
(57)

≤ ν1

τ
Lmax. (61)

Proof of Remark 3. Using the following inequalities with respect to matrix order

L � 1

n

n∑
i=1

Li, Li � nL, (62)

we bound L as follows

L = λmax (L)
(62)

≤ λmax

(
1

n

n∑
i=1

Li

)
≤ 1

n

n∑
i=1

λmax (Li) =
1

n

n∑
i=1

Li
(57)

≤ ν

n
Lmax. (63)

Fix τ =
∑d
j=1 pi;j ∈ [0, d] expected mini-batch of coordinates for all nodes i ∈ [n]. Then, with

probabilities (59) we have

L̃max

n
=

1

n
max

1≤i≤n
L̃i =

1

n
max

1≤i≤n
ρi

(61)

≤ ν1

τn
Lmax ≤

ν1

τn
Lmax,

46

Published as a conference paper at ICLR 2021

To get it upper bounded by Lmax, notice that max1≤j≤d Li;j ≤ λmax(Li) = Li, which implies

Lmax = max
1≤i≤n

max
1≤j≤d

Li;j ≤ max
1≤i≤n

Li = Lmax. (64)

Therefore

L+
L̃max

n
≤
(ν
n

+
ν1

τn

)
Lmax.

M.2 IMPORTANCE SAMPLING FOR DIANA+

To find optimal probabilities for DIANA+, we minimize ωmax + L̃max

µn part of the complexity (19)

when each node uses an independent sampling as for DCGD+. Definitions of L̃max and ωmax imply

ωmax+
L̃max

µn
= max

ij

(
1

pi;j
− 1

)
+max

ij

(
1

pi;j
− 1

)
Li;j
µn

= Θ

(
max
ij

(
1

pi;j
− 1

)(
Li;j
µn

+ 1

))
.

(65)
Therefore it is equivalent to minimize the following for each node i ∈ [n] independently:

max
1≤j≤d

(
1

pi;j
− 1

)
L′i;j , L′i;j :=

Li;j
µn

+ 1 ≥ 1, (66)

This can be solved in the same way as (58). The optimal probabilities are

pi;j =
L′i;j

L′i;j + ρ′i
=

Li;j
µn + 1

Li;j
µn + 1 + ρ′i

(67)

and an upper bound for ρ′i is analogous to (61)

ρ′i ≤
1

τ

d∑
j=1

L′i;j =
1

τ

d∑
j=1

(
Li;j
µn

+ 1

)
=
d

τ
+

1

nτ

d∑
j=1

Li;j
µ

(57)

≤ d

τ
+
ν1

nτ

Lmax

µ

(64)

≤ d

τ
+
ν1

nτ

Lmax

µ
.

(68)

Proof of Remark 4. With probabilities (67) we can upper bound the complexity (19) as follows

ωmax +
L̃max

µn

(65)

≤ 2 max
1≤i≤n

max
1≤j≤d

(
1

pi;j
− 1

)
L′i;j

(67)
=

2

τ
max

1≤i≤n
ρ′i

(68)

≤ 2d

τ
+

2ν1

τn

Lmax

µ
.

(69)

Combined with (63), we have

ωmax +
L

µ
+
L̃max

µn
≤ 2d

τ
+

(
ν

n
+

2ν1

τn

)
Lmax

µ
.

Remark 7 (Improvement over standard DGD). Let us estimate how much improvement do we get with
respect to standard Distributed Gradient Descent (DGD), where each node computes full gradients
∇fi(xk) and sends dense updates to the server in each iteration. The iteration complexity of DGD is
Õ(Lµ). To compare it against the complexity (19) of DIANA+ we use the same setup as in previous
remarks (namely, independent samplings with probabilities (26) and τ = d/n). Since Li � nL, we
have Lmax = maxi∈[n] λmax(Li) ≤ nL. Hence, (27) implies

ωmax +
L

µ
+
L̃max

µn
≤ 2n+

3nL

µ
,

47

Published as a conference paper at ICLR 2021

which is O(n) times bigger than the iteration complexity of DGD. However, in case of DGD, each
node sends n times more bits to the server. In total, DIANA+ and DGD have the same communication
complexity in the worst case. To illustrate the best complexity DIANA+ can provide, consider the
special case when Li = L for all i ∈ [n] and ν1 = O(1). Then, clearly Lmax = L and we get
Õ(n+ L

µ) complexity for DIANA+, yielding up to n times speedup against DGD. Moreover, in case
of diagonal matrices Li, DIANA+ spends n times less local computation on partial derivatives and
guarantees additional n times speedup.

M.3 INDEPENDENT SAMPLING FOR ADIANA+

For the accelerated method ADIANA+, we construct probabilities pi;j similar to (59) and (67) as
follows

pi;j :=

(
L′i;j

L′i;j + ρ′′i

)1/2

=

(Li;j
µn + 1

Li;j
µn + 1 + ρ′′i

)1/2

, L′i;j =
Li;j
µn

+ 1 ≥ 1, (70)

where ρ′′i is determined uniquely from
∑d
j=1

(
L′i;j

L′i;j+ρ
′′
i

)1/2

= τ . Notice that

τ =

d∑
j=1

(
L′i;j

L′i;j + ρ′′i

)1/2

≤
d∑
j=1

(
L′i;j
ρ′′i

)1/2

=
1√
ρ′′i

d∑
j=1

√
L′i;j .

Therefore √
ρ′′i ≤

1

τ

d∑
j=1

√
Li;j
µn

+ 1 ≤ 1

τ

d∑
j=1

(√
Li;j
µn

+ 1

)
≤ d

τ
+

1

τ

d∑
j=1

√
Li;j
µn

(57)

≤ d

τ
+
ν2

τ

√
Lmax

µn

(64)

≤ d

τ
+
ν2

τ

√
Lmax

µn

(71)

Proof of Remark 5. We bound terms ωmax and Lmax

µn using probabilities (70) as follows:

ωmax = max
i,j

(
1

pi;j
− 1

)
= max

i,j

(√
ρ′′i
L′i;j

+ 1− 1

)
≤ max

i,j

√
ρ′′i
L′i;j

(70)

≤ max
i,j

√
ρ′′i

(71)

≤ d

τ
+
ν2

τ

√
Lmax

µn
.

(72)

Lmax

µn

(58)
= max

i,j

(
1

pi;j
− 1

)
Li;j
µn

(70)

≤ max
i,j

√
ρ′′i

Li;j
µn√

Li;j
µn + 1

≤ max
i,j

√
ρ′′i

√
Li;j
µn

(71)

≤

(
d

τ
+
ν2

τ

√
Lmax

µn

)√
Lmax

µn
.

(73)

Let ν and ν2 are O(1). Denote ω = d
τ , κi = Li

µ and κmax = maxi∈[n] κi. Then with this notation
we have

L

µ
≤ ν

n
κmax = O

(κmax

n

)
ωmax ≤ ω +

ν2

τ

√
κmax

n
= ω

(
1 +

ν2

d

√
κmax

n

)
= O

(
ω

(
1 +

√
κmax

d
√
n

))
Lmax

µn
≤
(
ω +

ν2

τ

√
κmax

n

)√
κmax

n
= O

(
ω

(
1 +

√
κmax

d
√
n

) √
κmax√
n

) (74)

Then, in case of nL ≤ L̃max, we have

ωmax +

√
ωmax

L̃max

µn
= O

(
ω

(
1 +

√
κmax

d
√
n

)(
1 +

(κmax

n

)1/4
))

,

48

Published as a conference paper at ICLR 2021

which should be compared with O
(
ω
(
1 +

√
κmax

n

))
(Li et al., 2020). If κmax = O(nd2), then we

get O(
√
d) speedup factor. If nL > L̃max, then

ωmax +

√
L

µ
+

√√√√
ωmax

√
L̃max

µn

√
L

µ

= O

ω(1 +

√
κmax

d
√
n

)
+

√
κmax

n
+

√√√√
ω

(
1 +

√
κmax

d
√
n

)√
κmax

n

√
ω

(
1 +

√
κmax

d
√
n

)√
κmax

n


= O

(
ω

(
1 +

√
κmax

d
√
n

)
+

√
κmax

n
+

[
ω

(
1 +

√
κmax

d
√
n

)√
κmax

n

]3/4
)
,

which should be compared with ω + κmax + ω3/4n1/4
√

κmax

n (Li et al., 2020). If κmax = O(nd2),
then we get O(

√
n) times smaller second term and O

(
(nd)1/4

)
times smaller third term.

49

Published as a conference paper at ICLR 2021

N VARIANCE REDUCTION: ISEGA+

In this part we apply our redesign to another variance reduced method called ISEGA (Mishchenko
et al., 2020; Hanzely & Richtárik, 2019b). At the core of ISEGA, the mechanism for variance
reduction is based on SEGA method (Hanzely et al., 2018). The key difference between ISEGA
and DIANA is that ISEGA updates the control variates h more aggressively using projection instead
of the mere α-step towards the projection used in DIANA. Adapting our matrix-smoothness-aware
sparsification to ISEGA, we define the update rule of control vectors hki as follows (for now assume
Li is invertible)

hk+1
i = arg min

h∈Range(Li)

Ck
i L
†1/2
i ∇fi(xk)=Ck

i L
†1/2
i h

‖h− hki ‖2L†i

= hki + LiL
†1/2
i Ck

i

(
Ck
i L
†1/2
i LiL

†1/2
i Ck

i

)†
Ck
i L
†1/2
i (∇fi(xk)− hki)

= hki + L
1/2
i Ck

i

(
Ck
iC

k
i

)†
Ck
i L
†1/2
i (∇fi(xk)− hki)

= hki + L
1/2
i Diag(Pi)C

k
i L
†1/2
i (∇fi(xk)− hki).

Note that the update rule in DIANA+ has the form

hk+1
i = hki + αL

1/2
i Ck

i L
†1/2
i (∇fi(xk)− hki)

for some fixed scalar α > 0, and thus is more conservative. Note that we choose the gradient estimator
to be the same gki = hki + L

1/2
i Ck

i L
†1/2
i (∇fi(xk)− hki). The method is presented as Algorithm 7.

Algorithm 7 ISEGA+
1: Input: Initial point x0 ∈ Rd, initial shifts h0

i ∈ Rd, current point xk, step size parameter γ and
α, sketch Ck

i and Ck
i := L

1/2
i Ck

i L
†1/2
i , current shifts hk1 , . . . , h

k
n and hk := 1

n

∑n
i=1 h

k
i .

2: on each node
3: get xk from the server
4: send sparse update ∆k

i = Ck
i L
†1/2
i (∇fi(xk)− hki)

5: gki = hki + L
1/2
i ∆k

i

6: hk+1
i = hki + L

1/2
i Diag(Pi)∆

k
i

7: on server
8: get sparse updates ∆k

i from each node
9: gk = 1

n

∑n
i=1 g

k
i = hk + 1

n

∑n
i=1 L

1/2
i ∆k

i

10: xk+1 = proxγR(xk − γgk)

11: hk+1 = 1
n

∑n
i=1 h

k+1
i = hk + 1

n

∑n
i=1 L

1/2
i Diag(Pi)∆

k
i

Note that we can not obtain the convergence rate of ISEGA+ directly from the framework of Gorbunov
et al. (2020a). Instead, to get the tight convergence rate, we shall cast it as an instance of GJS
method (Hanzely & Richtárik, 2019b). Theorem 23 provides the result – we can see that the worst
case complexity is identical to DIANA+. In terms of the practical performance, we expect ISEGA+
to outperform DIANA+ due to the more aggressive update rule of control variates.
Theorem 23. Suppose that γ ≤ 1

4L̃max
n +2L+µ(ωmax+1)

. Then, we have

E[Ψk] ≤ (1− γµ)Ψ0,

where

Ψk := ‖xk − x∗‖2 +
γ

2n

n∑
i=1

‖φki − L
†1/2
i ∇fi(x

∗)‖2Diag(Pi)−1

and φki := L
†1/2
i hki . Consequently, the overall complexity of ISEGA+ is

Õ

(
ωmax +

L

µ
+
L̃max

nµ

)
.

50

Published as a conference paper at ICLR 2021

Proof. The proof can be seen as a special case of the generalized Jacobian sketching theory of Hanzely
& Richtárik (2019b). For the sake of clarity, we provide a specialized proof here.

Note first that by (54),we have

E
[
‖gk −∇f(x∗)‖2

]
≤ 2

(
L+

2L̃max

n

)
Df (xk, x∗) +

2L̃max

n2

n∑
i=1

∥∥∥φki − L
†1/2
i ∇fi(x

∗)
∥∥∥2

.

Similarly, we have

E
[
‖φk+1

i − L
†1/2
i ∇fi(x

∗)‖2Diag(Pi)−1

]
= E

[
‖φki + Diag(Pi)C

k
i (L
†1/2
i ∇fi(x

k)− φki)− L
†1/2
i ∇fi(x

∗)‖2Diag(Pi)−1

]
= E

[
‖(I−Diag(Pi)C

k
i)(φki − L

†1/2
i ∇fi(x

∗)) + Diag(Pi)C
k
i L
†1/2
i (∇fi(xk)−∇fi(x∗))‖2Diag(Pi)−1

]
= E

[
‖(I−Diag(Pi)C

k
i)Diag(Pi)

− 1
2 (φki − L

†1/2
i ∇fi(x

∗)) + Diag(Pi)
1/2Ck

i L
†1/2
i (∇fi(xk)−∇fi(x∗))‖2

]
= E

[
‖(I−Diag(Pi)C

k
i)Diag(Pi)

− 1
2 (φki − L

†1/2
i ∇fi(x

∗))‖2
]

+ E
[
‖Diag(Pi)

1/2Ck
i L
†1/2
i (∇fi(xk)−∇fi(x∗))‖2

]
= ‖φki − L

†1/2
i ∇fi(x

∗)‖2Diag(Pi)−1−I + ‖L†1/2i (∇fi(xk)−∇fi(x∗))‖2

≤ ‖φki − L
†1/2
i ∇fi(x

∗)‖2Diag(Pi)−1−I + 2Dfi(x
k, x∗)

and therefore

E

[
1

n

n∑
i=1

‖φk+1
i − L

†1/2
i ∇fi(x

∗)‖2Diag(Pi)−1

]
≤ 1

n

n∑
i=1

‖φki−L
†1/2
i ∇fi(x

∗)‖2Diag(Pi)−1−I+2Df (xk, x∗)

(75)

Following the classical analysis of SGD (i.e., proof of Lemma C.1 of Gorbunov et al. (2020a)), we
get

E
[
‖xk+1 − x∗‖2

]
= (1− γµ)|xk − x∗‖2 − 2γDf (xk, x∗) + γ2E

[
‖gk −∇f(x∗)‖2

]
≤ (1− γµ)|xk − x∗‖2 − 2γ

(
1− γ

(
L+

2L̃max

n

))
Df (xk, x∗)

+
2L̃maxγ

2

n2

n∑
i=1

∥∥∥φki − L
†1/2
i ∇fi(x

∗)
∥∥∥2

.

Adding γ
2 -multiple of (75) to the above, we get

E
[
‖xk+1 − x∗‖2

]
+
γ

2
E

[
1

n

n∑
i=1

‖φk+1
i − L

†1/2
i ∇fi(x

∗)‖2Diag(Pi)−1

]

≤ (1− γµ)‖xk − x∗‖2 − 2γ

(
1

2
− γ

(
L+

2L̃max

n

))
Df (xk, x∗)

+
2L̃maxγ

2

n2

n∑
i=1

∥∥∥φki − L
†1/2
i ∇fi(x

∗)
∥∥∥2

+
γ

2n

n∑
i=1

‖φki − L
†1/2
i ∇fi(x

∗)‖2Diag(Pi)−1−I(76)

Next, note that we have

2L̃maxγ
2

n2

n∑
i=1

∥∥∥φki − L
†1/2
i ∇fi(x

∗)
∥∥∥2

+
γ

2n

n∑
i=1

‖φki − L
†1/2
i ∇fi(x

∗)‖2Diag(Pi)−1−I

≤ (1− γµ)γ

2n

n∑
i=1

‖φki − L
†1/2
i ∇fi(x

∗)‖2Diag(Pi)−1 (77)

51

Published as a conference paper at ICLR 2021

since it is equivalent to

4L̃maxγ

n

n∑
i=1

∥∥∥φki − L
†1/2
i ∇fi(x

∗)
∥∥∥2

+γµ

n∑
i=1

‖φki−L
†1/2
i ∇fi(x

∗)‖2Diag(Pi)−1 ≤
n∑
i=1

‖φki−L
†1/2
i ∇fi(x

∗)‖2,

which holds since γ ≤ 1
4L̃max
n +µ(ωmax+1)

.

To finish the proof, it remains to plug (77) into (76), use that γ ≤ 1
4L̃max
n +2L

and unroll the recurrence.

52

Published as a conference paper at ICLR 2021

O VARIANCE REDUCTION WITH BI-DIRECTIONAL COMPRESSION: DIANA++

In this method, the master server applies compression in its turn with sketch C independently. Thus,
we maintain an additional control vector Hk, which helps to reduce the variance coming from the
master’s sparsification. Moreover, nodes keep track of Hk just like the central server.

Algorithm 8 DIANA++
1: Input: Initial point x0 ∈ Rd, initial shifts h0

i ∈ Range(Li), H
0 ∈ Range(L), current point xk,

step size parameter γ, α and β, sketch Ck
i and Ck

i := L
1/2
i Ck

i L
†1/2
i , current shifts hk1 , . . . , h

k
n, H

k

and hk := 1
n

∑n
i=1 h

k
i .

2: on each node
3: send sparse update ∆k

i = Ck
i L
†1/2
i (∇fi(xk)− hki)

4: ∆k
i = L

1/2
i ∆k

i , g
k
i = hki + ∆k

i , h
k+1
i = hki + α∆k

i
5: on server
6: get sparse updates ∆k

i from each node
7: ∆k = 1

n

∑n
i=1 ∆k

i = 1
n

∑n
i=1 L

1/2
i ∆k

i

8: gk = ∆k + hk = 1
n

∑n
i=1 Ck

i

(
∇fi(xk)− hki

)
+ hki

9: send sparse update δk = CkL†1/2(gk −Hk)
10: δk = L1/2δk, ĝk = Hk + δk = Hk + Ck

(
gk −Hk

)
11: xk+1 = proxγR(xk − γĝk)

12: hk+1 = hk + α∆k

13: Hk+1 = Hk + βδk

14: on each node
15: get δk from the server
16: reconstruct δk = L1/2δk, ĝk = Hk + δk = Hk + Ck

(
gk −Hk

)
17: xk+1 = proxγR(xk − γĝk)

18: Hk+1 = Hk + βδk

Theorem 24. Let Assumptions 2 and 3 hold and assume that each node generates its own diagonal
sketch Ci independently from others. The master server, in its turn, generates C independently from
the nodes. Then, Algorithm 8 has the following iteration complexity

O

(
1

min (α− βθ′, β)
+

α+ βθ + βθ′

min (α− βθ′, β)

(
L

µ
+
L̃
µ

+
L̃L̃′max

nµ
+
L̃max

nµ

))
,

where we made the following notations

θ :=
nL̃

L̃max + 2L̃L̃′max

≤ n

2L̃′max

, θ′ :=
2θ

n
L̃′max ≤ 1 ∈ [0, 1]

L̃′max := max
1≤i≤n

λmax

(
P̃i ◦ (L

1/2
i L†L

1/2
i)
)
, L̃ := λmax

(
P̃ ◦ L

)
with bounds α ≤ 1

1+ωmax
= maxi∈[n] maxj∈[d]

1
pi;j

and β ≤ 1
1+ω = maxj∈[d]

1
pj

.

Remark 8. Note that, when master does not compress the messages, then we have P̃ = 0. This
implies the same complexity we had for DIANA+ as quantities L̃, θ, θ′ are all become zeros.

Proof. The proof follows the same structure as for DIANA+, with additional variance reduction
process introduced for the master server. Analogously, we start bounding the following second
moment:

E
[
‖ĝk −∇f(x∗)‖2

]
= E

[
‖ĝk − gk‖2

]
+ E

[
‖gk −∇f(x∗)‖2

]
. (78)

We can bound the second term as it was done in (54):

E
[
‖gk −∇f(x∗)‖2

]
≤ 2

(
L+

2L̃max

n

)
Df (xk, x∗) +

2L̃max

n2

n∑
i=1

∥∥hki −∇fi(x∗)∥∥2

L†i
.

53

Published as a conference paper at ICLR 2021

Then we decompose the first term E
[
‖ĝk − gk‖2

]
into two as follows:

E
[
‖ĝk − gk‖2

]
= E

[
‖Ck(gk −Hk)− (gk −Hk)‖2

]
= ‖gk −Hk‖2E[(I−Ck)>(I−Ck)]

= ‖gk −Hk‖2
L†1/2(P̃◦L)L†1/2

≤ L̃‖gk −Hk‖2L†
≤ 2L̃‖gk −∇f(x∗)‖2L† + 2L̃‖Hk −∇f(x∗)‖2L† .

(79)

To bound each of the two summands in (79), we derive the analogue of (48).

E
[
L

1/2
i

(
Ci − I

)>
L†
(
Ci − I

)
L

1/2
i

]
= E

[
L

1/2
i

(
L
†1/2
i CiL

1/2
i − I

)
L†
(
L

1/2
i CiL

†1/2
i − I

)
L

1/2
i

]
= E

[
L

1/2
i

(
L
†1/2
i Ci(L

1/2
i L†L

1/2
i)CiL

†1/2
i − L

†1/2
i CiL

1/2
i L† − L†L

1/2
i CiL

†1/2
i + L†

)
L

1/2
i

]
(45)
= L

1/2
i

(
L
†1/2
i

(
Pi ◦ (L

1/2
i L†L

1/2
i)
)

L
†1/2
i − L

†1/2
i L

1/2
i L† − L†L

1/2
i L

†1/2
i + L†

)
L

1/2
i

= L
1/2
i L

†1/2
i

(
Pi ◦ (L

1/2
i L†L

1/2
i)
)

L
†1/2
i L

1/2
i − L

1/2
i L†L

1/2
i

= L
1/2
i L

†1/2
i

(
P̃i ◦ (L

1/2
i L†L

1/2
i)
)

L
†1/2
i L

1/2
i .

(80)

Then we bound them as follows. First, we have

E
[
‖gk −∇f(x∗)‖2L†

]
= ‖∇f(xk)−∇f(x∗)‖2L† + E

[
‖gk −∇f(xk)‖2L†

]
≤ 2Df (xk, x∗) + E

∥∥∥∥∥ 1

n

n∑
i=1

Ck
i (∇fi(xk)− hki) + hki −∇fi(xk)

∥∥∥∥∥
2

L†


= 2Df (xk, x∗) +

1

n2

n∑
i=1

E
[∥∥∥(Ck

i − I)L
1/2
i rki

∥∥∥2

L†

]

= 2Df (xk, x∗) +
1

n2

n∑
i=1

∥∥rki ∥∥2

E
[
L

1/2
i (Ck

i−I)>L†(Ck
i−I)L

1/2
i

]
(80)
= 2Df (xk, x∗) +

1

n2

n∑
i=1

∥∥rki ∥∥2

L
1/2
i L

†1/2
i (P̃i◦(L

1/2
i L†L

1/2
i))L

†1/2
i L

1/2
i

= 2Df (xk, x∗) +
1

n2

n∑
i=1

∥∥∥L†1/2i (∇fi(xk)− hki)
∥∥∥2

P̃i◦(L
1/2
i L†L

1/2
i)

≤ 2Df (xk, x∗) +
L̃′max

n2

n∑
i=1

∥∥∇fi(xk)− hki
∥∥2

L†i

≤ 2Df (xk, x∗) +
2L̃′max

n2

n∑
i=1

∥∥∇fi(xk)− fi(x∗)
∥∥2

L†i
+

2L̃′max

n2

n∑
i=1

∥∥hki −∇fi(x∗)∥∥2

L†i

≤ 2Df (xk, x∗) +
4L̃′max

n
Df (xk, x∗) +

2L̃′max

n2

n∑
i=1

∥∥hki −∇fi(x∗)∥∥2

L†i

= 2

(
1 +

2L̃′max

n

)
Df (xk, x∗) +

2L̃′max

n2

n∑
i=1

∥∥hki −∇fi(x∗)∥∥2

L†i

(81)

54

Published as a conference paper at ICLR 2021

Then, for the control vectors Hk at the master, we have

Ek
[∥∥Hk+1 −∇f(x∗)

∥∥2

L†

]
= Ek

[∥∥Hk −∇f(x∗) + βδk
∥∥2

L†

]
=
∥∥Hk −∇f(x∗)

∥∥2

L†
+ 2βE

[〈
Hk −∇f(x∗), gk −Hk

〉
L†

]
+ β2Ek

[∥∥Ck(gk −Hk)
∥∥2

L†

]
=
∥∥Hk −∇f(x∗)

∥∥2

L†
+ 2βEk

[〈
Hk −∇f(x∗), gk −Hk

〉
L†

]
+ β2Ek

[∥∥gk −Hk
∥∥2

E[(Ck)>L†Ck]

]
≤
∥∥Hk −∇f(x∗)

∥∥2

L†
+ 2βEk

[〈
Hk −∇f(x∗), gk −Hk

〉
L†

]
+ β2Ek

[∥∥gk −Hk
∥∥2

L†1/2E[(Ck)2]L†1/2

]
≤
∥∥Hk −∇f(x∗)

∥∥2

L†
+ 2βEk

[〈
Hk −∇f(x∗), gk −Hk

〉
L†

]
+ β2(1 + ω)Ek

[∥∥gk −Hk
∥∥2

L†

]
≤
∥∥Hk −∇f(x∗)

∥∥2

L†
+ 2βEk

[〈
Hk −∇f(x∗), gk −Hk

〉
L†

]
+ βEk

[∥∥gk −Hk
∥∥2

L†

]
= (1− β)

∥∥Hk −∇f(x∗)
∥∥2

L†
+ βEk

[∥∥gk −∇f(x∗)
∥∥2

L†

]
≤ (1− β)

∥∥Hk −∇f(x∗)
∥∥2

L†
+ 2β

(
1 +

2L̃′max

n

)
Df (xk, x∗) +

2βL̃′max

n2

n∑
i=1

∥∥hki −∇fi(x∗)∥∥2

L†i

Now, for some θ (to be defined later), let

σk :=
1

n

n∑
i=1

‖hki −∇fi(x∗)‖2L†i + θ‖Hk −∇f(x∗)‖2L† .

Then, we have

E
[
‖ĝk −∇f(x∗)‖2

]
(78)
= E

[
‖ĝk − gk‖2

]
+ E

[
‖gk −∇f(x∗)‖2

]
(79)

≤ 2L̃E
[
‖gk −∇f(x∗)‖2L†

]
+ 2L̃‖Hk −∇f(x∗)‖2L† + E

[
‖gk −∇f(x∗)‖2

]
(81)

≤ 4L̃

(
1 +

2L̃′max

n

)
Df (xk, x∗) +

4L̃L̃′max

n2

n∑
i=1

∥∥hki −∇fi(x∗)∥∥2

L†i

+ 2

(
L+

2L̃max

n

)
Df (xk, x∗) +

2L̃max

n2

n∑
i=1

∥∥hki −∇fi(x∗)∥∥2

L†i

+ 2L̃‖Hk −∇f(x∗)‖2L†

= 2

(
L+ 2L̃+

4L̃L̃′max

n
+

2L̃max

n

)
Df (xk, x∗)

+

(
4L̃L̃′max

n
+

2L̃max

n

)
1

n

n∑
i=1

∥∥hki −∇fi(x∗)∥∥2

L†i
+ 2L̃‖Hk −∇f(x∗)‖2L†

= 2

(
L+ 2L̃+

4L̃L̃′max

n
+

2L̃max

n

)
Df (xk, x∗) +

(
4L̃L̃′max

n
+

2L̃max

n

)
σk,

with the following choice of θ:

θ :=
nL̃

L̃max + 2L̃L̃′max

≤ n

2L̃′max

, θ′ :=
2θ

n
L̃′max ≤ 1.

55

Published as a conference paper at ICLR 2021

For the control vectors hki and Hk, we deduce

E
[
σk+1

]
≤ (1− α)

1

n

n∑
i=1

‖hki −∇fi(x∗)‖2L†i + 2αDf (xk, x∗)

+ (1− β)θ
∥∥Hk −∇f(x∗)

∥∥2

L†
+ 2βθ

(
1 +

2L̃′max

n

)
Df (xk, x∗) +

2βθL̃′max

n2

n∑
i=1

∥∥hki −∇fi(x∗)∥∥2

L†i

=

(
1− α+

2βθL̃′max

n

)
1

n

n∑
i=1

‖hki −∇fi(x∗)‖2L†i + (1− β)θ
∥∥Hk −∇f(x∗)

∥∥2

L†

+ 2

(
α+ βθ

(
1 +

2L̃′max

n

))
Df (xk, x∗)

≤ max

(
1− α+

2βθL̃′max

n
, 1− β

)
σk + 2

(
α+ βθ

(
1 +

2L̃′max

n

))
Df (xk, x∗)

= max (1− α+ βθ′, 1− β)σk + 2 (α+ βθ + βθ′)Df (xk, x∗).

Thus the constants from (Gorbunov et al., 2020a) are as follows

A = L+ 2L̃+
4L̃L̃′max

n
+

2L̃max

n

B =
4L̃L̃′max

n
+

2L̃max

n
=

2L̃
θ

C = α+ βθ + βθ′

ρ = min (α− βθ′, β) .

Let M = 2B
ρ , and note that Bθ = 2L̃ and Bθ′ =

4L̃L̃′max

n . Then

A+ CM = A+ 2B
α+ βθ + βθ′

min (α− βθ′, β)

= O

(
α+ βθ + βθ′

min (α− βθ′, β)

(
L+ L̃+

L̃L̃′max

n
+
L̃max

n

))
.

1 +
B

M
− ρ = 1− ρ

2
= 1− 1

2
min (α− βθ′, β) .

56

	Introduction
	Mining for Smoothness Information
	Motivation and Contributions
	Introduction
	Compressed communication
	Variance reduction
	Acceleration
	Further tricks

	Mining for Smoothness Information
	One size fits all
	``According to the work of their hands'' (Lam 3:64)
	``Like treasure hidden in a field, which a man found and covered up'' (Mat 13:44)

	Motivation and Contributions
	Unbiased diagonal sketches
	Data-dependent sparsification operators
	Matrix-smoothness-aware redesign of 3 distributed methods
	Dramatic improvements in complexity results
	Single node case
	Lower bounds
	Experiments

	New Communication-Efficient Distributed Methods Exploiting Matrix Smoothness
	DCGD+
	Variance reduction: DIANA+
	Acceleration with variance reduction: ADIANA+

	Improvements Over the Original Methods
	Parameters describing distribution of Li
	Importance sampling for DCGD+
	Importance sampling for DIANA+
	Independent sampling for ADIANA+

	Experiments
	Experimental Setup
	Variance reduction with new sparsification and importance sampling
	The proposed and usual sparsification techniques for the 3 distributed methods
	The effect of sparsification level on the convergence rate

	Conclusions, Extensions and Future Work
	Limitations
	Table of Frequently Used Notation
	Theory in the Single Node Case: RCD as Sketched Gradient Descent (SkGD)
	`NSync
	Sketched Gradient Descent (SkGD)
	CGD+

	Lower Bounds for Sketches as Linear Compression Operators
	Fixed sketches
	Random sketches
	Optimal sketches
	Random sketches with linear constraints
	Variance against communication trade-off

	Proofs
	Proof of Theorem 9
	Proof of Theorem 13
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5

	Improvements Over The Original Methods
	Importance sampling for DCGD+
	Importance sampling for DIANA+
	Independent sampling for ADIANA+

	Variance Reduction: ISEGA+
	Variance Reduction with Bi-directional Compression: DIANA++

