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ABSTRACT

Due to its distributed methodology alongside its privacy-preserving features, Fed-
erated Learning (FL) is vulnerable to training time backdoor attacks. Contem-
porary defenses against backdoor attacks in FL require direct access to each in-
dividual client’s update which is not feasible in recent FL settings where Secure
Aggregation is deployed. In this study, we seek to answer the following question,
”Is it possible to defend against backdoor attacks when secure aggregation is in
place?”. To this end, we propose Meta Federated Learning (Meta-FL), a novel
variant of FL which not only is compatible with secure aggregation protocol but
also facilitates defense against backdoor attacks.

1 INTRODUCTION

Federated Learning (FL) is a distributed learning framework that enables millions of clients (e.g.,
mobile and edge devices) jointly train a deep learning model under the supervision of an orchestra-
tion server (McMahan et al. (2017); Smith et al. (2017); Zhao et al. (2018),§D.1). Taking advantage
of the data distributed among the crowd of clients enables FL to train a highly accurate shared global
model. In every round of FL, the central server randomly selects a cohort of participants to locally
train the joint global model on their private data and submit an update to the server, which would
be aggregated into the new global model. FL decouples model training from the need to access
participants’ data by collecting focused model updates that contain enough information to improve
the global model without revealing too much about clients’ private data (Kairouz et al., 2019).

While collecting model updates, instead of centralizing raw training data, significantly reduces pri-
vacy concerns for participating clients, it does not offer any formal privacy guarantees. Recent
studies have shown that model updates can still leak sensitive information about the client’s data
(Melis et al., 2019; Nasr et al., 2018), which proves that preserving the privacy of clients is only a
promise, and certainly not the reality of FL.

To address such privacy concerns, recent FL settings deploy Secure Aggregation (SecAgg)
(Bonawitz et al. (2017),§D.2), a cryptographic protocol that enables the server to compute aggregate
of updates and train the global model while keeping each individual update uninspectable at all time.
Looking from the server’s point of view, SecAgg can be a ”double-edged sword.” On the one hand,
it can systematically mitigate privacy risks for participants, which would make FL more appealing
to clients and eventually result in higher client turnout. On the other hand, it would facilitate training
time adversarial attacks, such as backdoor attacks, by masking participants’ contributions.

This paper answers the following question, ”Is it possible to defend against backdoor attacks when
SecAgg is in place?”, a question that has not been investigated by prior studies. To this end, we
propose Meta Federated Learning (Meta-FL), a novel FL framework which not only preserves the
privacy of participants but also facilitates defense against backdoor attacks. In our framework, we
take full advantage of the abundance of participants by engaging more than one training cohort
at each round to participate in model training. To preserve the privacy of participants, Meta-FL
bootstraps the SecAgg protocol to aggregate updates from each training cohort. In Meta-FL, the
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server is provided with a set of cohort aggregates, instead of individual model updates, which are
further aggregated to generate the new global model. Please refer to Figure 3 in Appendix §A for an
overview of model training in Meta-FL.

Meta-FL moves defense execution point from update level to aggregate level which facilitates miti-
gating backdoor attacks by offering the following advantages: (a) server can monitor cohort aggre-
gates without violating the privacy of participants. Therefore, the adversary is forced to be mindful
of their submissions and maintain stealth on the aggregate level as aggregates which are statisti-
cally different from others are likely to get flagged and discarded; (b) cohort aggregates exhibit
less variation compared to individual client updates, which makes it easier for the server to detect
anomalies, and (c) adversary faces competition from benign clients to hold control of the value of
cohort aggregates which hinders them from executing intricate defense evasion techniques.

Our contributions are summarized as follows: (i) We propose meta federated learning, a novel FL
framework that facilitates defense against backdoor attacks while protecting the privacy of partici-
pants, (ii) We show that moving the defense execution point from update level to aggregate level is
effective in mitigating backdoor attacks without compromising privacy. (iii) We perform a system-
atic evaluation of contemporary defenses against backdoor attack in both baseline FL and Meta-FL.
Results on two classification datasets of SVHN (Netzer et al., 2011) and GTSRB (Stallkamp et al.,
2012) show that Meta-FL enhances the robustness of contemporary defense to backdoor attacks.

2 META FEDERATED LEARNING

In this section, we first discuss the challenges in mitigating backdoor attacks in FL. Then, we propose
Meta Federated Learning (Meta-FL), and explain how it improves robustness to backdoor attacks
while preserving the privacy of participating clients.

Challenges in defending against backdoor attack in FL are two-fold:
Challenge 1. Inspecting model updates is off limits with or without SecAgg. Recent studies have
demonstrated that model updates can be used to partially reconstruct clients’ training data (Yao et al.,
2019; Li et al., 2019; Gu et al., 2019); therefore, any defensive approach which requires examination
of submitted updates is a threat to the privacy of participants, and against privacy promises of FL.
Moreover, inspecting model updates simply is not a valid option in systems augmented with SecAgg.
Therefore, privacy promises of FL prohibit the server from auditing clients’ submissions which gives
the adversary the privilege to submit any arbitrary value without getting flagged as anomalous. We
refer to this privilege as submission with no consequences.
Challenge 2. Even without the restrictions mentioned above, defending against backdoor attacks
would not be a trivial task. Model updates submitted by clients show high variations which makes it
extremely difficult for the central server to identify whether an update works toward an adversarial
goal. Sporadicity observed from model updates originates from the non-i.i.d distribution of the
original dataset among participants, and the fact that each update is a product of stochastic gradient
descent, a non-deterministic algorithm whose output is not merely a function of its input data.

Motivated to address the challenges above, we propose, Meta-FL, a novel federated setting which
not only protects the privacy of clients but also aids the server in defense against backdoor attacks.
Algorithm 1 summarizes different steps of model training in Meta-FL, which we discuss in details
here. In each round t of training in Meta-FL, server randomly selects π cohorts {ζt1, ζt2, ..ζtπ}, each
containing c unique clients (Line 3). Training cohorts can be sampled in-order or independently.
In the latter case, each cohort is sampled after another, and thus, no client will be a member of
more than one cohort (ζti ∩ ζtj = ∅). In the recent case, there is no inter-dependency among cohort
selection, and therefore, cohorts can have clients in common; this scenario is more suitable for cases
where the number of participating clients is relatively small. Next, server broadcasts global model
Gt to clients in each cohort (Line 5), each client i locally and independently trains the model Gt
on their training data to obtain a new local model Lt+1

i , and compute their model update δi (Line
7). Then, the server establishes π separate instances of SecAgg protocol to concurrently compute
the aggregate of updates submitted from clients of each cohort (Line 9). Finally, in the last stage of
training, the server aggregates all the ”cohort aggregates” using aggregation rule Γ, and updates the
joint model with its learning rate η to obtain the next global model Gt+1 (Line 11).

In our framework, plain model updates never leave the client’s side. All participants are required to
follow the SecAgg protocol and submit cryptography masked updates. SecAgg guarantees that the
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server is able to aggregate the masked submissions to update the global model but can not obtain
the value of each individual update. While each cohort aggregate may still leak information about
collective training data of cohort members, the inferred information can not be associated with any
individual client; therefore, the privacy of participants is preserved in Meta-FL.

Algorithm 1 Meta-FL framework
1: Initialize shared global model
2: for each round t in 1,2,3.. do
3: Select π training cohorts {ζt1, ζt2, ..ζtπ}.
4: for cohort ζtj in {ζt1, .., ζtπ} in parallel do
5: Broadcast global model Gt.
6: for client i in cohort ζtj in parallel do
7: δti ← ClientUpdate(i, Gt)
8: end for
9: ∆t

j ← SecAgg(δt1, δ
t
2, .., δ

t
c)

10: end for
11: Gt+1 = Gt + η Γ(∆t

1,∆
t
2, ..,∆

t
π)

12: end for

In Meta-FL, as the central server can only
see the aggregate of training cohorts, defense
mechanisms are obliged to carry out on aggre-
gate level rather than update level. This prop-
erty offers the server several advantages in mit-
igating backdoor attacks, which we will cover
in the rest of this section. However, before we
can proceed, we need to define several concepts
that are key in understanding what follows. In
the rest of this paper, we refer to a training co-
hort as adversarial if and only if there exists at
least one malicious client among its members.
Naturally, a cohort is referred to as benign if
none of its members are malicious. Moreover,
we refer to the aggregate of updates from a be-
nign and an adversarial cohort as a benign and
adversarial aggregate, respectively.

Moving defense execution point from update to
aggregate level facilitates mitigating backdoor attacks by offering following advantages:
Advantage 1. Server is allowed to inspect and monitor cohort aggregates. This property forces the
adversary to maintain stealth on the aggregate level as adversarial aggregates which are statistically
different from other benign aggregates are likely to get detected and discarded by the server. There-
fore, Meta-FL revokes the privilege of submission with no consequences.
Advantage 2. Cohort aggregates are less sporadic compared to individual client updates which
aids the server in detecting anomalies. This advantage takes on the challenge 2 discussed above.
By drawing an analogy to simple random sampling in statistics (Rice, 2006), we demonstrate that
cohort aggregates show less variation across each coordinate compared to individual updates.

For ease of analysis, we assume that training cohorts are sampled independently meaning that there
is no inter-dependency among client selection in each cohort. In this case, at any round t, updates
submitted by any cohort of c clients are essentially a random sample of size c collected without
replacement from the population of model updates. Assuming that updates are averaged, cohort
aggregates are in fact sample means of model update population. As the composition of cohorts is
a random process, cohort aggregates are thus random variables whose distribution is determined by
that of model updates as shown below (for proof refer to (Rice, 2006))

V ar(∆j) =
σ2
j

c

(
P − c
P − 1

)
, E[∆j ] = E[µj ] (1)

Here, σ2
j and µj denote variance and mean of population of model updates across the jth coordinate,

respectively, and ∆j indicates the jth coordinate of a cohort aggregate ∆. Assuming that each cohort
contains more than one client (1 < c), it’d be trivial to show that P−c

c(P−1) < 1. Therefore, we can
prove that the variance of aggregates across any coordinate j is upper bounded by the variance of
model updates across that coordinate. Lower variation from cohort aggregates makes it easier for
outlier detection-based defenses to infer patterns of benign observations, and effectively detect out-
of-distribution malicious instances.
Advantage 3. As adversarial updates are aggregated with other updates, malicious clients face
competition from benign clients to control the value of cohort aggregate. This property makes it
harder for the adversary to meticulously arrange values of adversarial aggregates to evade defenses.

3 EVALUATION

Experiment Setup. We study Meta-FL on two classification datasets namely SVHN (Netzer et al.,
2011) and GTSRB (Stallkamp et al., 2012) with non-i.i.d. data distributions. For more details on
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dataset description and their corresponding benchmark DNNs, and parameter setups, please refer
to §B. Similar to the analysis in (Sun et al., 2019), we experiment with fixed frequency attack
scenarios. In the baseline FL, Attack-f-k describes a scenario where k attackers appear at every f
round of training. For the case of Meta-FL setting, Attack-f-k describes the case where at every
f round of training, k training cohorts contain an adversarial client. In our threat model (§E), the
adversary seeks to mount pixel pattern backdoor attack by adopting either the ”Naive” or the ”Model
Replacement” techniques (Bagdasaryan et al., 2020). For more details on adversary’s capabilities
and objective refer to §E.

Meta-FL vs Baseline FL. In this section, we compare the capabilities of contemporary defenses
against backdoor attacks in both baseline and Meta-FL. Our empirical evaluation shows that all
defenses benefit from the advantages discussed in §2 and offer better robustness in Meta-FL.

We consider contemporary defenses such as Krum (Blanchard et al., 2017), Coordinate-Wise Me-
dian (CWM) and Trimmed Mean (TM) (Yin et al., 2018), Norm Bounding (NB) and Differential
Privacy (DP) (Sun et al., 2019), and RFA (Pillutla et al., 2019). For description of these techniques
refer to §C. The comparison is performed between a Meta-FL framework with 15 cohorts of 5 clients
and a baseline FL with a single cohort of 15 clients. For this experiment, we set the number of train-
ing cohorts in Meta-FL equal to the number of selected clients in baseline FL to ensure that server
sees the same number of ”aggregands” (15 client updates in baseline FL and 15 cohort aggregates
in Meta-FL) across both cases. Moreover, with the way our attack scenarios are designed, the same
number of aggregands are adversarial across both frameworks, which assures a fair comparison.

Figures 1 and 2 report performance of contemporary defenses against backdoor attacks on GTSRB
and SVHN benchmarks, respectively. As shown, Meta-FL puts all defense at an advantage in
mitigating against backdoor attacks. Attack success rate of both the naive and model replacement
approach in Meta-FL (solid lines) is lower than in baseline FL (dashed lines) when the same defense
is in place across both frameworks. Therefore, our evaluations show that existing defenses are more
robust to backdoor attacks in Meta-FL compared to baseline FL. Please refer to §F, for a more
detailed analysis of experimental results.
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Figure 1: Performance of defenses against backdoor attacks in SVHN model training.

4 CONCLUSION

In this paper, we propose Meta-FL, a new FL framework which not only protects the privacy of
participants through the SecAgg protocol but also facilitates defense against backdoor attacks. Our
empirical evaluations demonstrate that contemporary defense tends to be more effective against
backdoor attacks in Meta-FL compared to baseline FL.
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Figure 2: Performance of defenses against backdoor attacks in GTSRB model training.
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A OVERVIEW OF META-FL

Figure 3: Overview of model training in meta federated learning.

B DATASETS AND THEIR BENCHMARK NEURAL NETWORKS

GTSRB is s traffic sign dataset with 39,209 training and 12,630 test samples, where each sample is
labeled with one of the 43 classes, and SVHN is a dataset of more than 100k images of digits cropped
out of images of houses and street numbers. Table 1 reports the topology and hyperparameters of
benchmarks used for GTSRB and SVHN datasets.

We use a Dirichlet distribution with parameter α = 0.9 to partition GTSRB and SVHN datasets into
disjoint non-i.i.d shards and then distribute them among 150 and 300 clients, respectively. Following
a similar setup to prior arts, each participating client trains their local model using SGD for 5 epochs
with a batch size of 64 and a learning rate of 0.1. Both Meta-FL and baseline FL resume the train-
ing process until a certain number of training rounds are completed. Throughout our experiments,
GTSRB and SVHN models are trained for 75 and 50 rounds, respectively.

For all experiments, pixel pattern backdoor attacks are performed in which the adversary aims to
influence the model to misclassify inputs from a base label as a target label upon the presence of an
attacker chosen pattern (trigger). We set the adversarial trigger as a white square located at the top
left corner of the image which roughly covers 9% of the entire image. The objective of backdoor
attacks in GTSRB and SVHN datasets is to mispredict images of ”Speed limit 80 miles per hour” as
”Speed limit 50 miles per hour” and images of ”digit 6” as ”digit 1”, upon the presence of the white
box trigger.

Table 1: Model architecture for SVHN and GTSRB datasets.
GTSRB SVHN

Layer Type Filter/Unit Layer Type Filter/Unit

Conv + ReLU 3× 3× 32 Conv + ReLU 3× 3× 32
Conv + ReLU 3× 3× 32 Conv + ReLU 3× 3× 32
Conv + ReLU 3× 3× 64 Conv + ReLU 3× 3× 64
Conv + ReLU 3× 3× 64 Conv + ReLU 3× 3× 64
Conv + ReLU 3× 3× 128 Conv + ReLU 3× 3× 128
Conv + ReLU 3× 3× 128 Conv + ReLU 3× 3× 128
FC + ReLU 43 FC + ReLU 512

Softmax 43 FC + ReLU 10
Softmax 10
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C ROBUST AGGREGATION RULES AND DEFENSES

Numerous studies have proposed robust aggregation rules (Blanchard et al., 2017; Yin et al., 2018;
Pillutla et al., 2019) to ensure convergence of distributed learning algorithms in the presence of ad-
versarial actors. The majority of studies in this line of work assume a byzantine threat model in
which the adversary can cause local learning procedures to submit any arbitrary update to ensure
convergence of learning algorithms to an ineffective model. In addition to robust aggregation rules,
several works have proposed novel defenses (Fung et al., 2018; Sun et al., 2019) against backdoor
and poisoning attacks in FL. In what follows, we review several of the techniques which we experi-
ment in §3.

Krum. The Krum algorithm, proposed by (Blanchard et al., 2017), is a robust aggregation rule
which can tolerate f byzantine attackers out of n participants selected at any training round. Krum
has theoretical guarantees for the convergence should the condition n ≥ 2f + 3 hold true. At any
training round, for each model update δi, Krum takes the following steps: (a) computes the pairwise
euclidean distance of n − f − 2 updates that are closest to δi, (b) computes the sum of squared
distances between update δi and its closest n − f − 2 updates. Then, Krum chooses the model
update with the lowest sum to update the parameters of the joint global model.

Coordinate-Wise Median. In Coordinate-Wise Median (CWM) aggregation rule (Yin et al., 2018),
for each jth model parameter, the jth coordinate of received model updates are sorted, and their
median is used to update the corresponding parameter of the global model.

Trimmed Mean. Trimmed Mean (TM) is a coordinate wise aggregation rule (Yin et al., 2018). for
β ∈ [0, 12 ), trimmed mean computes the jth coordinate of aggregate of n model updates as follows:
(a) it sorts the jth coordinate of the n updates, (b) discards the largest and smallest β fraction of the
sorted updates, and (c) takes the average of remaining n(1 − 2β) updates as the aggregate for the
jth coordinate.

RFA. RFA (Pillutla et al., 2019) is a robust privacy-preserving aggregator which requires a secure
averaging oracle. RFA aggregates local models by computing an approximate of the geometric me-
dian of their parameters using a variant of the smoothed version of Weiszfeld’s algorithm (Weiszfeld,
1937). RFA appears to be tolerant to data poisoning attacks but can not offer byzantine tolerance as
it still requires clients to compute aggregation weights according to the protocol. Relying on clients
to follow a defensive protocol without a proper means to attest to the correctness of computations
on the client-side cast doubts on the practicality of RFA. To the best of our knowledge, RFA is the
only existing defense that is compatible with secure aggregation.

Norm Bounding. Norm Bounding (NB) is an aggregation rule proposed by (Sun et al., 2019),
which appears to be robust against false-label backdoor attacks. In this aggregation rule, a norm
constraint M is set for model updates submitted by clients to normalize the contribution of any
individual participants. Norm bounding aggregates model updates as follows: (a) model updates
with norms larger than the set threshold M are projected to the l2 ball of size M and then (b) all
model updates are averaged to update the joint global model.

Differential Privacy. Differential Privacy (DP) originally was designed to establish a strong pri-
vacy guarantee for algorithms on aggregate databases, but it can also provide a defense against
poisoning attacks (Ma et al., 2019; Dwork et al., 2006). Extending DP to FL ensures that any par-
ticipant’s contribution is bounded and therefore, the joint global model does not over-fit to any indi-
vidual update. DP is applied in FL as follows (Kairouz et al., 2019): (a) server clips clients’ model
update by a norm M , (b) clipped updates are aggregated, then (c) a Gaussian noise is added to the
resulted aggregate. DP has recently been explored and shown to be successful against false-label
backdoor attacks in a study by (Sun et al., 2019).

C.1 IMPLEMENTATION DETAILS OF DEFENSES

As mentioned in §3, we compare the performance of contemporary defense such as Krum,
Coordinate-wise Median (CWM), trimmed mean (TM), norm bounding (NB), differential privacy
(DP), and RFA against naive and model replacement backdoor attacks on both Meta-FL and baseline
FL.
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Hyper parameter and implementation details of these techniques are provided below: (1) For Krum,
to meet the convergence condition n ≥ 2f + 3, we set f = 6. (2) In Trimmed mean, the parameter
β is set to 0.20. (3) For RFA, the maximum iteration of the Weiszfeld algorithm and the smoothing
factor is set to 10, and 10−6, respectively. (4) In norm bounding defense, as the original work
(Sun et al., 2019) did not provide a recipe to decide the norm threshold M , we developed our own
approach to determine M . In our experiments, at each round, we set the norm threshold M to
the norm of the smallest aggregand to ensure all aggregands will have an equal l2 norm before
aggregation. In FL, as the global model converges, model updates (and therefore cohort aggregates)
start to fade out and have smaller norms. Therefore, setting a constant norm threshold for all training
rounds would not be effective, which is why we took a dynamic approach to decide M . (5) For
differential privacy the hyper-parameter M is set similar to norm bounding and then a Gaussian
noise N (0.0, 0.0012) is added to the aggregate of updates (or cohort aggregates) before updating
the global model.

D BACKGROUND KNOWLEDGE

D.1 FEDERATED LEARNING

Federated learning is a machine learning setting that enables millions of clients (mobile or edge
devices) to jointly train a deep learning model using their private data without compromising their
privacy. The training procedure in FL is orchestrated by a central server responsible for providing
the shared global model to participants and aggregating their submitted model updates to generate
the new global model. The key appeal of FL is that it does not require centralizing participating
users’ training data, which makes it ideal for privacy-sensitive tasks.

A standard FL setting consists of P participating clients. Each client i holds a shard of training data
Di which is private to the client and is never shared with the orchestration server. In each round
t of FL, the central server randomly selects a set ζt of c clients, and broadcasts the current global
model Gt to them. Selected set of clients ζt is referred to as training cohort of round t. Each
client i in the training cohort locally and independently trains the joint model Gt using Stochastic
Gradient Descent (SGD) optimization algorithm for E epochs on its local training data Di to obtain
a new local model Lt+1

i , and submits the difference Lt+1
i − Gt as its model update to the central

server. Next, the central server averages model updates submitted by clients in the training cohort
and updates the shared global model using its learning rate η to obtain the new global model Gt+1,
as shown in Equation 2. Model training resumes until the global model converges to acceptable
performance, or certain training rounds are completed.

Gt+1 = Gt +
η

n

n∑
i=i

(Lt+1
i −Gt) (2)

D.2 SECURE AGGREGATION

Secure Aggregation (SecAgg) (Bonawitz et al., 2017) is a secure multi-party computation protocol
that can reveal the sum of submitted model updates to the server (or aggregator) while keeping each
individual update uninspectable at all time. Secure Aggregation consists of three phases, prepara-
tion, commitment and finalization (Bonawitz et al., 2019). In the preparation phase, shared secrets
are established between the central server and participating clients. Model update from clients who
drop out during the preparation phase will not be included in the aggregate. Next, in the commit-
ment phase, each device uploads a cryptographically masked model update to the server, and the
server computes the sum of the submitted mask updates. Only clients that successfully commit their
masked model updates will contribute to the final aggregate. Lastly, in the finalization phase, com-
mitted clients reveal sufficient cryptographic secrets to allow the server to unmask the aggregated
model update.
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E THREAT MODEL

In this section, we present the objectives, capabilities, and schemes of backdoor attackers that are
commonly used in prior studies. In other words, our proposed Meta-FL framework does not make
any additional assumptions.

Attacker’s Objective. Similar to prior arts such as (Xie et al., 2020; Bagdasaryan et al., 2020),
we consider an adversary whose goal is to cause misclassifications to a targeted label T for in-
puts embedded with an attacker-chosen trigger. As opposed to Byzantine attacks (Blanchard et al.,
2017), whose purpose is to convergence the learning algorithm to a sub-optimal or utterly ineffective
model, the adversary’s goal in backdoor attacks is to ensure that the joint global model achieves high
accuracy on both the backdoor sub-task and the primary learning task at hand.

Attacker’s Capability. We make the following assumptions about the attacker’s capabilities: (a) We
assume the attacker controls a number of participants, which are referred to as sybils in the literature
of distributed learning. Sybils are either malicious clients which are injected into FL system or
benign clients whose FL training software has been compromised by the adversary, (b) following
Kerckhoffs’s theory (Shannon, 1949), we assume a strong attacker who has complete control over
local data and training procedure of all its Sybils. The attacker can modify training procedure’s
hyperparameters and is capable of modifying model updates before submitting them to the central
server, (c) adversary is not capable of compromising the central server or influencing other benign
clients, and more importantly, does not have access to benign clients’ local model, training data and
submitted updates.

Attack scheme. In our evaluations, we consider two backdoor attack schemes which are referred
to as ”Naive” and ”Model Replacement” in literature (Bagdasaryan et al., 2020). In both schemes,
adversaries train their local model with a mixture of clean and backdoored data, and model updates
are computed as the difference in the parameters of the backdoored local model and the shared global
model. In the naive approach, the adversary submits the computed model update. While in model
replacement attack, the model update is scaled using a scaling factor to cancel the contribution of
other benign clients and increase the impact of the adversarial update on the joint global model. A
carefully chosen scaling factor for adversarial updates can guarantee the replacement of the joint
global model with the adversary’s backdoored local model.
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F META-FL VS BASELINE FL [DETAILED VERSION]

F.1 UTILITY

In this section, we compare the utility of Meta-FL against baseline setting in terms of model accu-
racy. In this experiment, we evaluate the utility of baseline and Meta-FL frameworks across various
FL configurations and aggregation rules. Note that for a fair comparison, we make sure the number
of clients participating in each round of model training is equal across both frameworks. Figure
4 reports the test accuracy of models trained in Meta-FL and baseline settings deploying different
defenses and aggregation rules. As reflected, federated training with Meta-FL results in more ac-
curate models compared to baseline setting. All defenses and aggregation rules offer better utility
in our framework. Even Krum aggregation rules which has been known to cause a large drop in
performance of the learned model in baseline FL (Bagdasaryan et al., 2020; Bhagoji et al., 2019)
can train models with comparable performances in Meta-FL.
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Figure 4: Comparing utility of Meta-FL against baseline FL in terms of model accuracy.

F.2 ROBUSTNESS

In this section, we systematically compare the capabilities of contemporary defenses against back-
door attacks in both baseline and meta federated learning. Our empirical evaluation in this section
shows that all defenses benefit from the advantages discussed in §2 and offer better robustness in
our framework Meta-FL.

Figures 1 and 2 report performance of contemporary defenses against backdoor attacks on GTSRB
and SVHN benchmarks, respectively. We experiment with several attack scenarios to systematically
evaluate the performance of each defense against adversaries with a wide range of resources at hand.
As we move along the attack scenarios denoted on the horizontal axis of diagrams in Figures 2 and
1, the adversary becomes more and more powerful and appears more frequently with more sybils at
each round.

For a fair evaluation of contemporary defense across Meta-FL and baseline FL, we make sure the
defender faces similar challenges in both frameworks. Throughout our experiments in this section,
we set the number of training cohorts in Meta-FL equal to the number of selected clients in baseline
FL to ensure that server sees the same number of ”aggregands” (client updates in baseline FL and
cohort aggregates in Meta-FL) across both cases. Moreover, the way our attack scenarios are defined
ensures that the same number of aggregands are adversarial across both frameworks.

Across both Meta-FL and baseline FL frameworks, the scaling factor for model replacement attack
is set equal to the size of training cohorts to ensure that submissions from adversarial clients survive
the averaging procedure and overpower the aggregate of their corresponding cohort. For attack
scenarios in which multiple sybils appear in the same round, we assume they coordinate and divide
the scaling factor among themselves evenly.
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Figure 5: Effect of size of training cohorts on efficacy of CWM, Krum and TM against backdoor
attacks.

Figures 1 and 2 show that Meta-FL puts all defense at an advantage in mitigating against backdoor
attacks. Attack success rate of both the naive and model replacement approach in Meta-FL (solid
lines) is lower than in baseline FL (dashed lines) when the same defense is in place across both
frameworks. Therefore, our empirical evaluations show that existing defenses are more robust to
backdoor attacks in Meta-FL compared to baseline FL across.

While Meta-FL enhances the robustness of all 6 methods, we observe that Krum benefits the most
from our framework. We believe that lower variance on cohort aggregates aids Krum to effectively
separate benign and malicious updates. We note that server can further decrease the variance of
cohort aggregates along each coordinate by increasing the size of training cohorts, As discussed in
§2, and improve robustness of Krum aggregation rule.

Moreover, other methods such as coordinate-wise median and trimmed mean which are anomaly
detection-based defenses can also benefit from lower variations on cohort aggregate. Perhaps the
most important principle in detecting outliers is defining the distribution of ordinary observations,
which can be easier should observations exhibit low variations. Figure 5 shows the results for exper-
iments in which we evaluate the performance of Krum, CWM, and TM across Meta-FL frameworks
with increasingly larger training cohorts. For this experiment, we set the number of cohorts to 15
and varied cohort size between 5, 10 and 15. As reflected in Figure 5, increasing the size of training
cohorts improves the robustness of these techniques across all scenarios, especially for scenarios in
which the adversary appears more frequently with more sybils.

Although defenses such as RFA, differential privacy, and norm bounding appear to be robust against
poisoning attacks (Sun et al., 2019; Pillutla et al., 2019), our empirical evaluations show that they are
not effective against backdoor attacks, specifically model replacement attacks. In poisoning attacks,
the adversarial sub-task, which is misclassification of unmodified data samples (e.g. classifying
certain images of digit 1 as digit 7), is in direct contradiction with the primary learning task. There-
fore, poisoning updates (or aggregates) face direct opposition from submissions of benign clients,
which makes it harder for the adversary to succeed. However, for the case of backdoor attacks, the
adversary’s goal for the model is to learn the causal relation between the presence of an attacker’s
chosen trigger and certain model output which does not require the model to learn any knowledge
contradicting the primary learning task. Therefore, backdoor attacks tend to be stealthier compared
to poisoning attacks, and defenses that have shown resilience against poisoning attacks might fall
short against backdoor attacks.
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