
Published as a conference paper at ICLR 2021

DOES DIFFERENTIAL PRIVACY DEFEAT DATA POI-
SONING?

Matthew Jagielski
Northeastern University
jagielski.m@northeastern.edu

Alina Oprea
Northeastern University
a.oprea@northeastern.edu

ABSTRACT

Data poisoning attacks have attracted considerable interest, both from the practical
and theoretical machine learning communities. Recently, following widespread
adoption for its privacy properties, differential privacy has been proposed as a de-
fense from data poisoning attacks. In this paper, we show that the connection
between poisoning and differential privacy is more complicated than it would ap-
pear. We argue that differential privacy itself does not serve as a defense, but that
differential privacy benefits from robust machine learning algorithms, explaining
much of differential privacy’s success against poisoning.

1 INTRODUCTION

Modern machine learning applications involve large scale data collection, where a large amount of
data is collected from a variety of sources. For example, Google trains word prediction models by
allowing Android phones to send updates produced with local user data (Yang et al., 2018). The
large scale of the data collection makes verifying the data’s trustworthiness an impossible task. As
a result, adversaries can add maliciously crafted training data to corrupt the model learned from
the training data, in what is known as a poisoning attack. Poisoning attacks have been studied for a
variety of models and applications, including linear regression, support vector machines, and logistic
regression, and significant effort has been made in developing robust machine learning algorithms
to defend against poisoning attacks. Indeed, recently, poisoning attacks were identified as the most
worrisome threat among a survey of industry machine learning professionals (Kumar et al., 2020).

Independently, interest in protecting the privacy of users who appear in training data has spurned an
interest in privacy-preserving data analysis in general, and privacy preserving machine learning in
particular. Differential privacy (Dwork et al., 2006) has risen as the primary approach for ensuring
users’ privacy, having been used in the US Census (Haney et al., 2017), at Google (Erlingsson et al.,
2014; Bittau et al., 2017), and at Apple (Thakurta et al., 2017). An algorithm satisfying differential
privacy, informally, means that no adversary can learn more about a single data point than could
have been learned if it was not contained in the dataset. Differential privacy’s guarantee has natural
ramifications for data poisoning—if the data poisoning attack is reasonably small, then differential
privacy cannot reveal that the poisoning attack has occurred. This connection has motivated recent
work to explore the extent to which differential privacy can defend against poisoning attacks (Ma
et al., 2019; Hong et al., 2020). The goal of our work is to understand this connection more deeply.

To explore the connection, we introduce multiple metrics that a defense from poisoning should sat-
isfy. The first metric, vulnerability difference, measures how vulnerable the defense is compared to
an undefended model. The second metric, friendly fire, measures how much the defense compro-
mises the performance of the model outside of the attack’s target. We show that differential privacy
provides surprisingly little benefit for these two goals: on MNIST, logistic regression trained with
objective perturbation (Chaudhuri et al., 2011) becomes more vulnerable to poisoning and has larger
friendly fire as the model becomes more private. However, to reconcile the robustness observed by
prior work with our negative results, we notice that gradient clipping offers some robustness. We
also discuss the implications of these observations for both poisoning and privacy research.
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2 BACKGROUND

Differential Privacy. Differential privacy is a formal guarantee of data privacy, defined as follows:
Definition 2.1. (Dwork et al., 2006). An algorithm A : D 7→ R is (ε, δ)-differentially private if for
any two datasets D0, D1 which differ on at most one row, and every set of outputs O ⊆ R:

Pr[A(D0) ∈ O] ≤ eε Pr[A(D1) ∈ O] + δ, (1)

where probabilities are taken only over the randomness of A.

Essentially, modifying one row of the dataset will not heavily modify the output of the algorithm,
meaning that no one row heavily.
Lemma 1 (Group Privacy). Let D0, D1 be two datasets differing on at most k rows, A is an (ε, δ)-
differentially private algorithm, and O an arbitrary output set. Then

Pr[A(D0) ∈ O] ≤ ekε Pr[A(D1) ∈ O] + ekε−1
eε−1 · δ. (2)

Group privacy provides a qualitatively similar guarantee to the differential privacy definition which
holds for larger groups. This property has been used to justify differential privacy as a defense for
poisoning attacks in Ma et al. (2019), which we discuss in the related work in the Appendix.

Poisoning Attacks. Poisoning attacks on machine learning insert or modify rows of a dataset, to
manipulate the model produced from that dataset. For this work, we consider an adversary who
has the ability to modify k rows of the dataset arbitrarily. This allows compatibility with the def-
inition of differential privacy. The adversary replaces points to satisfy their poisoning objective, a
measurement of how successful the attack is, while maintaining a low collateral damage, i.e. the
model’s performance should not change significantly outside of those points relevant to the poison-
ing objective. There is a wide range of objectives considered in the poisoning literature (we refer
the interested reader to Jagielski et al. (2020a) for a more thorough description of poisoning objec-
tives) - for this paper, we focus on an adversary who wishes to misclassify a single test point, which
suffices for our preliminary investigation. This is often referred to as a targeted poisoning attack.
We consider a simple adversary, who, in order to misclassify a given target point, adds k mislabeled
examples of that point (for our experiments, k = 5). That is, to target some sample (x, y), we add
k = 5 copies of (x, 1− y).

3 WHAT’S IN A DEFENSE?

The remainder of this paper considers the ability of differential privacy to defend against poisoning.
Before we go further, we must specify what it means to “defend against” a poisoning attack, and
what it means to use “differential privacy” as a defense.

For the former, we assert that a defense from a poisoning attack should satisfy two criteria. First,
it should reduce the poisoning objective, which we refer to as vulnerability. Second, it should not
cause friendly fire, a metric we introduce. Friendly fire happens either by damaging the classifier
when no poisoning is happening, or harming the performance of the classifier outside of the target
of the attack. Friendly fire can be measured on any region of input space—it is possible the defense
harms specific regions of input space disproportionately. For example, a defense which ignores
high loss points may perform similarly overall but damage poorly supported regions of the training
distribution. The success of a defense is the extent to which both vulnerability and friendly fire
are low. We define these metrics concretely, where A is the original learning algorithm, AD is the
proposed defensive learning algorithm, D0 is the unpoisoned dataset, D1 is a poisoned dataset, OBJ
is a measurement of the effectiveness of the poisoning attack, ` is a loss function, T is a constant,
and D∗ is a specific subset of data which may be impacted by the defense:

VOBJ(D0, D1;AD, A) =
OBJ(AD(D1))− OBJ(A(D0))

OBJ(A(D1))− OBJ(A(D0))
= 1 +

OBJ(AD(D1))− OBJ(A(D1))

OBJ(A(D1))− OBJ(A(D0))
(3)

FF(D∗, T ;Db, A
D, A) = Pr[`(D∗;AD(Db))− `(D∗;A(Db)) > T ] (4)
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We allow Db ∈ {D0, D1}, as friendly fire is important both when poisoned and unpoisoned. We
use T to understand the probability an attack causes significant damage. Friendly fire should ideally
be low for any meaningful setting of D∗ and T . Because learning algorithms are randomized, we
measure the expected value of each term in VOBJ. Notice that VOBJ is defined such that it is 0 when
the defense, trained on poisoned data, recovers the unpoisoned objective value of the undefended
model, and is 1 when the defense is equally vulnerable to the attack as when no defense is applied.
The ideal (albeit unrealistic) defense, which perfectly identifies and trains without poisoning, would
achieve a robustness of 0 and friendly fire of 0 for all D∗, T > 0 and both Db ∈ {D0, D1}.
Differential privacy as a defense? By analyzing multiple differentially private algorithms, we
show that simply applying differential privacy does not provide protection from poisoning. We do
so by showing that the objective perturbation algorithm for private logistic regression actually is
worse than nonprivate logistic regression in its robustness and friendly fire. However, this does not
preclude private algorithms from being robust for other reasons, as in Hong et al. (2020).

4 NO: OBJECTIVE PERTURBATION

In this section, we will show that private logistic regression trained using objective perturbation
does not perform well as a defense, using the metrics introduced in Section 3. We use objective
perturbation because (ε, 0)-differentially private objective perturbation recovers standard training as
ε→∞, allowing us to isolate the impact of differential privacy.

We use two datasets - the synthetic two-dimensional dataset used in Ma et al. (2019) and MNIST. We
modify the synthetic dataset so all data points have an `2 norm of 1, making the dataset uniformly
distributed on the unit circle. We use the classes 3 and 5 from the MNIST dataset, also normalized
so data has an `2 norm of 1. For both datasets, we randomly select 100 data points xt, yt from
the test set to poison, converting the unpoisoned D into a poisoned Dp by replacing 5 rows from
the training set with xt, 1 − yt. We attack one point at a time to ensure poisoning attacks do not
interfere with each other. Over the 100 data points, we report the 25th, 50th, and 75th percentile of
the robustness and friendly fire, using 100 trials of Monte Carlo simulation to compute these metrics.
We use cross-entropy loss to compute both robustness and vulnerability. As a result, the robustness
measures the factor by which cross entropy increases on a target point, while friendly fire computes
the probability that a given point will be have its loss increased due to differential privacy.

Dataset ε Acc ε-DP Acc XE VOBJ XE FF - T = 0.1
25th 50th 75th 25th 50th 75th

Synth 0.5
1.0

0.920 3.81 4.32 5.30 0.24 0.31 0.39
Synth 1.0 0.957 1.74 2.00 2.34 0.08 0.11 0.23
Synth 2.0 0.975 1.06 1.16 1.27 0.00 0.03 0.1

MNIST 0.5
1.0

0.914 10.41 27.28 88.02 0.31 0.37 0.41
MNIST 1.0 0.949 9.14 16.52 57.76 0.23 0.28 0.345
MNIST 2.0 0.972 7.07 9.23 41.87 0.15 0.19 0.30

Table 1: Accuracy (Acc), robustness, and friendly fire for ε-differentially private objective pertur-
bation. XE=cross-entropy loss, FF is measured with Db = D0. Lower VOBJ is better - a perfect
defense achieves 0 VOBJ and not applying any defense achieves 1 VOBJ. Lower FF is better - both a
perfect defense and standard training achieve 0 FF.

In Table 1, we document the accuracy of nonprivate and private models, and the robustness and
friendly fire of differential privacy. For both datasets, differentially private models are less robust
than nonprivate models; nonprivate models achieve VOBJ = 1. Furthermore, vulnerability and
friendly fire both increase as training becomes more private. Notice, too, that the accuracy of the
models decrease significantly as ε decreases. While it is well known that differential privacy harms
utility, this is important to be careful of for poisoning robustness—if a point is misclassified, it
doesn’t matter whether it was due to poisoning or privacy.

To reinforce this point, we will now show that, with differential privacy, those points which are most
easily targeted by poisoning attacks are also those points which are most harmed by differential
privacy, casting further doubt on the ability to simply apply differential privacy as a poisoning coun-
termeasure. To do so, we measure the error from poisoning (the denominator of Equation 3) and the
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accuracy of objective perturbation on a data point (the fraction of private models which correctly
classify the point, equivalent to FF with the 0-1 loss) for 100 poisoning points. We run objective
perturbation 250 times to compute the private accuracy. We show in Figure 1 that these values are
highly correlated. The Pearson’s R measures the correlation as -0.96 for the synthetic dataset and
-0.83 on MNIST, which is very strong correlation in both cases. Very reliably, the points most heav-
ily impacted by poisoning are also those points which are most frequently misclassified by privacy,
giving indication that differential privacy should not itself be used as a defense.

Notice that this our results here do not contradict results of Ma et al. (2019), which shows that there
is little difference between poisoned and unpoisoned models both trained with differential privacy.
This is because they do not compare against models trained nonprivately, which better informs the
decision to use differential privacy in practice for robustness.

(a) Synthetic (Ma et al., 2019), ε = .5 (b) MNIST, ε = 1

Figure 1: Correlation between error induced by privacy and one poisoning point with objective
perturbation on two datasets. Those points which are more impacted by data poisoning are also
more impacted by differential privacy, with a Pearson’s R of -0.96 on synthetic data, and -0.83 on
MNIST. Due to MNIST’s larger dataset size, single point poisoning attacks are less effective, so we
plot and measure Pearson’s R of the poisoning error in log scale.

5 YES: ROBUST MACHINE LEARNING AND DIFFERENTIAL PRIVACY

Despite the negative statement of the previous section, it is still possible that private algorithms can
defend against poisoning. The connection, though, must be more subtle: it cannot come directly
from differential privacy. We observe that a long line of work in differential privacy has leveraged
robust algorithms to reduce sensitivity, as we note in the Appendix. Results such as Hong et al.
(2020), indicating DP-SGD’s robustness to attack, may simply come from the robustness of the
underlying gradient clipping.

5.1 CLIPPED GRADIENT DESCENT

We experiment here with only clipped gradient descent, without adding noise required to impose
differential privacy. We present the full algorithm for DP-SGD and our hyperparameter settings in
the Appendix, but here, it suffices to note that the clipping norm parameter, C, governs how much
each data point contributes to the model—a smaller clipping norm diminishes the influence of any
one point. We show that clipped gradient descent offers some protection from data poisoning1. We
do this by evaluating the vulnerability and friendly fire of clipped gradient descent with multiple
values of the clipping norm C, following a similar experimental setup to Section 4, using only
MNIST.

We present the results of this experiment in Table 2, varying the clipping norm C. Notice that we
use T = 0.01 rather than T = 0.1 in this section due to the much smaller friendly fire when clipping

1This cannot be universally true, as the clipping norm can be set large enough to be irrelevant. However, in
practice, this parameter setting is unlikely, as it would result in too much noise being added during training.
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Dataset C No Clip Acc Clip Acc XE VOBJ XE FF - T = 0.01
25th 50th 75th 25th 50th 75th

MNIST 0.05

0.957

0.880 1.09 5.67 21.06 0 0 0
MNIST 0.1 0.930 0.01 1.95 5.00 0 0 0.11
MNIST 0.2 0.947 -0.50 0.24 2.08 0 0 0.84
MNIST 0.4 0.953 -0.57 0.94 3.50 0 0.03 0.36

Table 2: Accuracy of models trained without clipping (No Clip Acc), with clipping (Clip Acc), and
robustness and friendly fire for clipped gradient descent. XE=cross-entropy loss, FF is measured
with Db = D0. Lower VOBJ is better - a perfect defense achieves 0 VOBJ and standard training
achieves 1 VOBJ. Lower FF is better - both a perfect defense and standard training achieve 0 FF.

is applied. Even then, the vast majority of points do not see this decrease in loss. Clipped gradient
descent performs significantly better in terms of friendly fire compared to differential privacy. Notice
that, while clipped gradient descent is not robust in every case, it is more robust (that is, VOBJ < 1)
than standard SGD in 45% of cases with C = 0.1, 60% of cases with C = 0.2, and 50% of cases
with C = 0.4. While clipped gradient descent is not successful all of the time, it is often successful
and comparing with Table 1 shows that it is significantly more successful than differential privacy,
which always had VOBJ > 1.

6 CONCLUSION

In this paper, we argued that differential privacy itself is not a defense from poisoning attacks. While
differential privacy has strong formal guarantees, it frequently makes models more vulnerable to
attack, induces damaging friendly fire, and its damage to utility directly mirrors the damage done by
poisoning attacks. Recent successes in defending against attacks with private training likely come
from the underlying training algorithm being robust. Our results would likely be magnified in a
federated learning context, where clipping is done more aggressively, per user rather than per data
point. More work is necessary to understand clipped SGD’s robustness, as it is unclear how the
clipping interacts with stronger attacks and attacks with different goals, such as the clipping-aware
attacks proposed by Jagielski et al. (2020b).

The overall statement of this paper, however, is not that differential privacy should *not* be used
as a defense for poisoning. After all, as discussed, private mechanisms can leverage robustness to
improve utility, and the underlying robustness can be advantageous to preventing poisoning attacks.
And of course, many settings require both privacy and security, in which any robustness benefits
of private algorithms comes for free. It is also possible that DP-SGD exhibits other properties that
cannot be explained by the guarantees of differential privacy alone, such as the clipping or noise
impacting optimization (Song et al., 2020; Neelakantan et al., 2015), which we briefly discuss in the
related work found in the Appendix.

Our work highlights the importance of poisoning research to attempt stealthy, defense-aware attacks.
Additionally, defenses must measure all relevant metrics: robustness and friendly fire should both be
low, and if they are not, the tradeoffs between robustness and friendly fire must be well documented.
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On the effectiveness of mitigating data poisoning attacks with gradient shaping. arXiv preprint
arXiv:2002.11497, 2020.

Matthew Jagielski, Giorgio Severi, Niklas Pousette Harger, and Alina Oprea. Subpopulation data
poisoning attacks. arXiv preprint arXiv:2006.14026, 2020a.

Matthew Jagielski, Jonathan Ullman, and Alina Oprea. Auditing differentially private machine
learning: How private is private sgd? arXiv preprint arXiv:2006.07709, 2020b.

Ram Shankar Siva Kumar, Magnus Nyström, John Lambert, Andrew Marshall, Mario Goertzel,
Andi Comissoneru, Matt Swann, and Sharon Xia. Adversarial machine learning-industry per-
spectives. In 2020 IEEE Security and Privacy Workshops (SPW), pp. 69–75. IEEE, 2020.

Yuzhe Ma, Xiaojin Zhu, and Justin Hsu. Data poisoning against differentially-private learners:
Attacks and defenses. arXiv preprint arXiv:1903.09860, 2019.

Arvind Neelakantan, Luke Vilnis, Quoc V Le, Ilya Sutskever, Lukasz Kaiser, Karol Kurach, and
James Martens. Adding gradient noise improves learning for very deep networks. arXiv preprint
arXiv:1511.06807, 2015.

6



Published as a conference paper at ICLR 2021

Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and sampling in private
data analysis. In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing,
pp. 75–84, 2007.

Shuang Song, Kamalika Chaudhuri, and Anand D Sarwate. Stochastic gradient descent with differ-
entially private updates. In 2013 IEEE Global Conference on Signal and Information Processing,
pp. 245–248. IEEE, 2013.

Shuang Song, Om Thakkar, and Abhradeep Thakurta. Characterizing private clipped gradient de-
scent on convex generalized linear problems. arXiv preprint arXiv:2006.06783, 2020.

Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H Brendan McMahan. Can you really
backdoor federated learning? arXiv preprint arXiv:1911.07963, 2019.

Abhradeep Guha Thakurta, Andrew H Vyrros, Umesh S Vaishampayan, Gaurav Kapoor, Julien
Freudiger, Vivek Rangarajan Sridhar, and Doug Davidson. Learning new words, March 14 2017.
US Patent 9,594,741.

Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas Kong, Daniel Ra-
mage, and Françoise Beaufays. Applied federated learning: Improving google keyboard query
suggestions. arXiv preprint arXiv:1812.02903, 2018.

7



Published as a conference paper at ICLR 2021

A RELATED WORK

A.1 POISONING AND PRIVACY

Ma et al. (2019) show the following result bounding the impact of poisoning on private algorithms:
Theorem 2. (Ma et al., 2019) Let D be an unpoisoned dataset and Dp a poisoned dataset differing
from D on at most k rows. If C is a positive cost function representing the effectiveness of the
poisoning attack and Aε is an ε-differentially private algorithm, then

E[C(Aε)(D)] ≥ exp(−kε)E[C(Aε)(Dp)].

Our work argues that this theorem is ineffective at deciding whether or not to apply differential
privacy to protect against poisoning, as it does not compare a private model to a nonprivate model.
As such, it cannot capture friendly fire or robustness. The theorem is more useful in situations when
differential privacy must be applied, perhaps for regulatory reasons, and one seeks to understand
how robust it will be.

Hong et al. (2020) show that DP-SGD can be used as a defense from some poisoning attacks, which
we corroborate in Section 5. They also find that it is ineffective against availability poisoning attacks
(where the poisoning attacks are large), and can lead to decreased accuracy. It is worth noting that
the theoretical results of Ma et al. Ma et al. (2019) are very weak for availability attacks. We show
that the utility decrease of differential privacy is connected to poisoning, by showing that easy to
poison examples are also most heavily impacted by differential privacy’s utility cost.

DP-SGD has also been considered as a defense from poisoning in federated learning (Sun et al.,
2019). Interestingly, the experimental results of Sun et al. (2019) show that differential privacy pro-
vides robustness beyond that which is offered by clipping. While it is difficult to draw conclusions
about randomized algorithms from small numbers of trials, it is possible that the observed effect is
the result of an undocumented impact of DP-SGD on the optimization process. As we show, this
effect does not appear with logistic regression trained with objective perturbation.

Differential privacy has also been proposed to aid in anomaly detection by Du et al. (2019), which is
similar to poisoning robustness. Interestingly, they find that models trained privately do offer benefit
over nonprivately trained models, when used for backdoor and anomaly detection. Our paper argues
that more private models should not provide this benefit, a phenomenon that should be untangled
by future work. The most notable difference between the papers is that Du et al. (2019) uses much
larger models. It is possible that training with privacy interacts with neural network training and
linear model training differently. Future work should investigate this disparity.

Poisoning attacks have been proposed to audit differentially private models by Jagielski et al.
(2020b). Essentially, a successfully poisoned model reveals the presence of poisoning in the dataset,
causing privacy leakage. This strategy would not be possible if differential privacy was perfectly
robust to poisoning.

A.2 ROBUST ALGORITHMS AND DIFFERENTIAL PRIVACY

That DP-SGD is robust to poisoning attacks is reminiscent of the large body of work connecting
differential privacy to robust statistics. Early work in this direction has shown how to compute robust
statistics privately. This includes Nissim et al. (2007), who introduce smooth sensitivity framework
and the Sample-and-Aggregate algorithm. These approaches avoid the requirement for noise to grow
proportionally with global sensitivity. Dwork & Lei (2009) show how to use Propose-Test-Release to
privately compute general robust estimators. Several works show that private algorithms can benefit
from using robust algorithms. For single dimension means, for example, Bun & Steinke (2019) use
the trimmed mean to avoid dependence on the global sensitivity. Biswas et al. (2020) also use the
trimmed mean to achieve practical high dimensional mean estimation. For linear regression, Alabi
et al. (2020) empirically demonstrate that robust linear regression algorithms outperform global
sensitivity-based algorithms.

B SUPPLEMENT FOR SECTION 4

In Algorithm 1, we present the objective perturbation algorithm from Chaudhuri et al. (2011).
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Algorithm 1: Objective Perturbation (Chaudhuri et al., 2011)
Data: Dataset X,Y , privacy ε, regularization value λ, loss `, constant c
Function ObjPert(X,Y, ε, λ, `, c):

ε′ = ε− log(1 + 2c
nλ + c2

n2λ2 )
If ε′ > 0

∆ = 0
Else

∆ = c
n(exp(ε/4)−1) − λ

ε′ = ε/2
b ∼ exp(−bε′/2)

L(w) = 1
n

∑
i `(xi, yi;w) + λ||w||22 + 1

nb
Tw

return arg minw(L(w) + 1
2∆||w||22)

We use the implementation provided by diffprivlib (Holohan et al., 2019). We use 20 poisoning
points and 100 trials to compute VOBJ and FF for both datasets. We use 5 poisoning points, which
are constructed by simply taking the target point xt, yt and flipping its label to xt, 1 − yt before
adding 5 copies of it to the training set.

C SUPPLEMENT FOR SECTION 5

In Algorithm 2, we present the differentially private stochastic gradient descent algorithm from Song
et al. (2013). We use a noise multiplier of 0 in our experiments, as we attempt to understand the
impact of clipping alone. We use a batch size of 250, learning rate of 0.5, momentum of 0.9, and
train for T = 20 epochs. We use the implementation found in pytorch-dp2. Because training with
DP-SGD is more computationally expensive than objective perturbation, we use only 25 trials to
compute VOBJ and FF, and continue to use 5 poisoning points and 20 different target points.

Algorithm 2: Differentially Private Stochastic Gradient Descent (Song et al., 2013; Bassily
et al., 2014)
Data: Dataset X,Y , loss `, inital parameters w0, learning rate η, batch size b, iterations T ,

noise magnitude σ, clipping norm C
Function DPSGD(X,Y, `, w0, η, b, T, σ, C):

For i ∈ [T ]
G = 0
For (xi, yi) ∈ random batch of b elements from X,Y

g = ∇`(w0;xi, yi)

G = G+ min(C,||g||2)
b||g||2 g

wi = wi−1 − η(G+N (0, (Cσ)2I))
return wT

2https://github.com/pytorch/opacus
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