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ABSTRACT

Designing truthful, revenue maximizing auctions is a core problem of auction
design. Multi-item settings have long been elusive. Recent work of Dütting
et al. (2020) introduces effective deep learning techniques to find such auctions
for the prior-dependent setting, in which distributions about bidder preferences
are known. One remaining problem is to obtain priors in a way that excludes
the possibility of manipulating the resulting auctions. Using techniques from dif-
ferential privacy for the construction of approximately truthful mechanisms, we
modify the RegretNet approach to be applicable to the prior-free setting. In this
more general setting, no distributional information is assumed, but we trade this
property for worse performance. We present preliminary empirical results and
qualitative analysis for this work in progress.

1 INTRODUCTION

Auction design is a core problem of economic theory. The resulting auctions find practical ap-
plications for example in spectrum auctions for allocation of frequency bands to wireless carriers,
commodity auctions, as well as online auctions platforms like eBay.

In the standard model of independent private valuations, bidders have valuations over items and util-
ity dependent on the items allocated to them. The auctioneer does not know the realized valuations
of the bidders, but has access to aggregate information in the form of distributions over valuations.
Since valuations are private, incentivizing bidders to report them truthfully is important for finding
revenue maximizing auctions.

Myerson (1981) presents an optimal (truthful and revenue maximizing) auction for the single-item
multi-bidder setting, but the multi-item setting has long been elusive for reasons of computational
intractability; For a survey on intractability, see the introduction of Rahme et al. (2020). The last 10
years have seen advances in partial characterizations, algorithmic results, albeit satisfying weaker
notions than truthfulness, as well as applications of tools from machine learning and computational
learning theory; A survey on these developments can be found in the introduction of Dütting et al.
(2020).

Recently a line of work by Dütting et al. (2020) introduces deep learning techniques to find revenue
maximizing, truthful (or: dominant strategy incentive compatible) auctions. It develops the Regret-
Net approach, where regret, a measure for incentive compatibility, is used to constrain the learning
problem of finding revenue maximizing auctions by way of the augmented Lagrangian method. It is
able to recover known solutions and finds low-regret solutions for multi-item settings. This approach
is limited to the prior-dependent setting though, in which knowledge about the distributions of val-
uations is assumed. These distributions need to be aggregated in an incentive compatible manner,
to prevent influence on the outcome of the mechanism by this avenue. Most recently Rahme et al.
(2020) builds on RegretNet, but increases efficiency and applies reductions to get truthful auctions
from low regret ones.
∗We want to thank Olivia Röhrig for her invaluable contributions to increasing the clarity of this docu-

ment, the reviewers of the DPML workshop at ICLR 2021 for their instructive feedback, as well as NLnet
for its manifold organizational support. Code for the experiments is available at: https://github.com/
degregat/one-shot-approx-auctions/
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There also exist interesting connections between robust mechanism design and differential privacy:
McSherry & Talwar (2007) introduce its use as a solution technique for mechanism design, by using
the guarantees it provides to bound the influence agents can have on the outcome of mechanisms.
These mechanisms are approximately truthful (and approximately optimal), since the bounded in-
fluence results in bounded incentives to misreport. Nissim et al. (2011) further analyze the potential
for optimality approximation of mechanisms utilizing differential privacy.

1.1 CONTRIBUTIONS

To work towards an approach for solving the more general prior-free setting, in which no knowledge
about valuation distributions is assumed, we integrate the above techniques.

By using the work of Abadi et al. (2016), we make the training of RegretNet differentially private,
and thus robust to changes in distribution. This robustness allows us to remove the distribution
requirement and enables us to use RegretNet on single bids profiles to perform one-shot learning,
giving us one auction per bid profile.

Preliminary empirical analysis leads us to believe that the resulting auctions are approximately truth-
ful, prior-free approximations of optimal mechanisms.

We present a qualitative analysis of computational experiments with the modified codebase and
formulate theoretical problems, the solution of which we deem necessary for a thorough characteri-
zation.

2 OUR APPROACH

In this section we will give an explanation of the implementation details and the current state of
results. We believe our approach to lead to an approximately truthful prior-free one-shot learner,
giving agents only bounded incentive to misreport without depending on knowledge of valuation
distributions. Thus every bid should be an ε-dominant strategy. Evidence is not yet conclusive, but
preliminary results look promising. For background on the required theory see App. B.

2.1 PRIOR-FREE ONE-SHOT LEARNING

To work towards learning prior-free approximations of optimal auctions, we attempt to make the
RegretNet approach approximately truthful by making the regret computation differentially private.

As we do not assume the existence of any valuation distribution, we can only elicit bids and proceed
to do one-shot learning on them, to produce one auction per set of bids. We view the whole learner
L as the mechanism to be analyzed, since we learn an auction A from a bid profile b and then apply
it to the same bid profile to receive the outcome o: L(b) = A, then A(b) = o. From the perspective
of the learner, the bids are treated as valuations.

Concretely, we make two modifications to RegretNet Training (Alg. (1) from Dütting et al. (2020)):

1. We take one set of reports and use it in every iteration of training. (By turning a bid profile
into a δ-distribution and repeatedly sampling from it.)

2. We make the computation of the parameters w for the regret gradient differentially private,
by using a differentially private optimizer (Alg. (1) from Abadi et al. (2016)).

If we would only do the first, we would always learn an auction that overfits the reports, meaning
misreports could have a large influence. By introducing differential privacy, overfitting is reduced,
resulting in bounded influence of each bidders reports. Note: We use uniform distributions U(0, 1)
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to generate misreports v′i. Since we only use the samples to test a set of auction parameters w, this
is permissible without assuming valuation distributions.

ALGORITHM 1: One-Shot RegretNet Training
Input: one bid profile b
Output: one auction A = (gw, pw) with gw and pw being neural nets parametrized by w
Parameters: auction learning rate η > 0, misreport learning rate γ > 0, Lagrange update rates

∀t, ρt > 0, noise scale σ, gradient norm bound C, (η, γ, ρt, σ, C ∈ R), training steps T ,
misreport computation steps Γ, Lagrange update frequency Q, (T,Γ, Q ∈ N), set of bidders
N

Initialize: auction parameters w0 ∈ Rd, Lagrange multipliers λ0 ∈ Rn
for t = 0, . . . , T do

Initialize misreports: v′i ∼ U(0, 1), i ∈ N
for r = 0, . . . ,Γ do

forall i ∈ N do
v′i ← v′i + γ∇v′iu

w
i

(
bi;
(
v′i, b−i

))
end

end
forall i ∈ N do

Compute regret gradient:
gti = ∇w

[
uwi
(
bi;
(
v′i, b−i

))
− uwi (bi; b)

] ∣∣∣
w=wt

Clip regret gradient: /* Differential Privacy */

ḡti ← gti/max
(

1,
‖gti‖2
C

)
Add gaussian noise:
g̃ti ← ḡti +N (0, σ2C2I)

end

Compute Lagrangian gradient using Eq. (1) and update wt:
wt+1 ← wt − η∇w Cρt(wt, λt)
Update Lagrange multipliers once in Q iterations:
if t is a multiple of Q then

λt+1
i ← λti + ρt r̃gt i(w

t+1), ∀i ∈ N
else

λt+1 ← λt

end
end

The Lagrangian function (Section 4 of Dütting et al. (2020))1 is

∇wCρ(w, λt) =−
∑
i∈N
∇wpwi (b) +

∑
i∈N

λtigi + ρ
∑
i∈N

r̃gt i(w)gi (1)

with gi = ∇w
[

max
v′i∈Vi

uwi
(
bi;
(
v′i, b−i

))
− uwi (bi; b)

]
.

The above algorithm returns one auction, consisting of an allocation gw and payment function pw,
per set of reports.

2.2 REGRET COMPUTATION FOR ANALYSIS

To empirically evaluate whether this auction learner satisfies approximate truthfulness, and to mea-
sure the worst case approximation of an optimal auction, we need to compute a set of auctions with
different sets of reports. Then we can calculate regret and worst case revenue or welfare over them.

Since we need to train one auction for each set of bids, any evaluation will be computationally
expensive. We decided that the smallest meaningful test would be to measure the regret of a single
1 The only difference to RegretNet is that L = 1.
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misreporting agent for a sample of points from the valuation space. To calculate regret for one agent
on a single point of the valuation space, we take a valuation sample, and compute the corresponding
auction A0. We then construct a set of reports by enumerating all possible misreports ∀v′j1 ∈ V1 of
the first agent, while keeping the valuation reports v−1 = (v2, . . . , vn) of the other agents fixed. For
each set of reports (v′j1 , v−1) we then compute an auctionAj , with j ∈ J and J = (1, . . . , |M×V|).
Since we only handle additive valuations here, we model the valuation space per agent as M × V
with V = {0, 1} being the discrete valuations we permit, to make enumeration feasible.

The regret for the first agent, over all auctions Aj ∈ A, with Aj = (gwj , pwj ),∀j ∈ J , utility
uwi (vi; b) = vi(g

w
i (b))− pwi (b), and w0 the initial parameters, then is

rgt1 (w) = max
j∈J

u
wj
1 (v1; (v′j1 , v−1))− uw0

1 (v1; (v1, v−1)) (2)

ALGORITHM 2: Computing regret for One-Shot RegretNet
Input: Valuation space Θ = N ×M × V with V = {0, 1}
Parameters: number of valuation samples S
for s = 0, . . . , S do

Sample one set of valuations v from Θ
Compute one auction A0 on the valuations:
Alg. (1)← (v)

forall misreports v′j1 ∈ V1 do
Compute Aj with one misreport v′j1 and valuations of the other agents v−1:
Alg. (1)← (v′1, v−1)

end
Calculate regret for agent1 using Eq. (2)

end

2.3 QUALITATIVE ANALYSIS OF EMPIRICAL RESULTS

We can now do a qualitative analysis of the experimental results (figures in App. A): In the cases
without privacy, misreports that outperform truthful reports exist. When applying differential pri-
vacy, we can observe the following stages with increasing noise, dependent on noise multiplier σ:

1. More and more misreports stop outperforming truthful reports. Outperforming misreports
are visualized by the individual lines outside the main bundles of the misreporting agent in
Fig. 1.

2. At some threshold regret bounds for truthfully reporting and misreporting agents align.
This is marked by the bundles of the misreporting and truthfully reporting agent being of
roughly the same width from σ = 0.05 onwards.

3. Regret bounds widen, as can be seen by the bundles of misreporting and truthfully reporting
agents increasing in width. Revenue suffers, but its bounds tighten, which is marked by the
revenue bundles reducing their width and flattening their slope in Fig. 2. This can also be
seen in the steady decline of revenue in Tab. 2.

This is to be expected, since with differentially private training we exchange privacy for accuracy
of the resulting model (see Figure 4, Abadi et al. (2016)). In the frameworks of McSherry & Tal-
war (2007); Nissim et al. (2011) privacy controls approximation of truthfulness, accuracy controls
outcome quality.

In cases with very small valuation spaces, the technique does not provide reasonable tradeoffs,
most likely since noise quickly outweighs available information. Once our pipeline supports finer
valuation spaces, we will be able to analyze this in more depth.

All in all, these preliminary results are in line with our hypothesis of being able to train prior-
free approximations of optimal mechanisms which are approximately truthful. As this is a work
in progress, we have not yet achieved general quantifications for the degrees of approximation for
optimality and truthfulness. Producing conclusive evidence will require further investigation.
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3 FURTHER WORK

3.1 IMPROVING EMPIRICAL ANALYSIS

Since experiments are still comparatively expensive, we don’t have good data yet for larger in-
stances, finer valuation spaces or longer training. Application of the technique above to Rahme et al.
(2020), if successful, could make these experiments feasible. An implementation in TensorFlow 2
would allow us to make use of the new SIMD features of TensorFlow Privacy (Subramani et al.
(2020)), further reducing training time.

We will also evaluate wether it is possible to use an approximately truthful bid elicitation step for
the online algorithm. This might lead to a prior-independent solution, further improving efficiency
by being able to train auctions for the approximated distributions, instead of one auction per bid
sample.

It might also lead to improved outcomes, if the online learning can be used to turn non-truthful
reports into no longer approximately dominant strategies, while preserving approximate dominance
for truthful reports (as described on p.3, Lecture 1, Roth (2014)).

3.2 APPROXIMATION BOUNDS

Describing bounds for approximation of incentive compatibility, as well as prior-free performance
is an open problem for this work and related to the description of generalization bounds for the
learning system.

Our current hypothesis is, that to describe meaningful approximation bounds, it is necessary to
come up with generalization bounds for iterated, (ε, δ)-differentially private learning, which are
also sensitive to the information capacity of the hypothesis space. To our knowledge, this is still an
open problem.

Since the results of the above model depend on the auction setting (different networks are used to
model different auctions), as well as on the parameters of the differentially private learning, we
can not reuse the generalization bounds from the original model (Sections 2.4 and 3.3 of Dütting
et al. (2020)). To get meaningful generalization bounds, one approach would be to extend covering
number based techniques, as used in Section 2.4 Dütting et al. (2020) to also account for the learning
algorithm that is being used, especially in regard to its privacy, as in He et al. (2020). The resulting
technique should bind on the capacity of the hypothesis space, as well as on the sensitivity of the
learning.

3.3 PRIVACY AWARE AGENTS

Another interesting topic of further investigation is the influence the technique has on incentive
compatibility if the agents are privacy aware (Nissim et al., 2012).
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A FIGURES AND TABLES

In the following figures, each experiment is visualized by a single line. One experiment corresponds
to the application of the auction learner to one valuation sample from the valuation space. For each
sample we enumerate the misreports of one agent and train one auction each to calculate maximal
regret as well as mininimal revenue.
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Figure 1: Max regret of a misreporting and a truthfully reporting bidder (5 bidders, 3 items)

500 1000
Training iterations

1

2

3

R
ev

en
ue

σ = 0.0

500 1000
Training iterations

σ = 0.03

500 1000
Training iterations

σ = 0.05

500 1000
Training iterations

σ = 0.09

Figure 2: Min revenue (5 bidders, 3 items)

Learner Prior Agents Items Regret Revenue Iterations σ
RegretNet uniform 5 3 0.0022 2.10 40000 N/A
one-shot RegretNet none 5 3 up to 0.0330 1.71 - 2.57 1000 0.05

Table 1: Comparison of prior-free and prior-dependent results

σ Regret agent1 min Revenue overall
no DP 0.337 1.993

0.03 0.346 1.857
0.05 0.151 1.713
0.09 0.198 1.191

Table 2: Approximation of truthfulness and approximation of outcome optimality depending on σ
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B BACKGROUND

As mentioned in the introduction, it is possible to learn multi-item auctions in the prior-dependent
setting. What follows is a more in depth explanation of the techniques we have used to tackle the
prior-free setting.

B.1 AUCTION DESIGN

The multi-item auctions we will consider consist of sets N = {1, . . . , n} and M = {1, . . . ,m} of
n bidders and m items. Each bidder i has valuations vi({j}) for all items j. We focus on bidders
with additive valuations2, where valuations for sets of items S ⊆M are vi(S) =

∑
j∈S vi({j}).

In the prior-dependent setting, the auctioneer does not know the valuation profile v = (v1, . . . , vn)
of the agents in advance, but has prior knowledge about the distribution F from which v is drawn.
V = Rn×m is the space of possible valuations v and bids b, with vi, bi ∈ Vi and Vi = Rm. Bidders
report their bids, b = (b1, . . . , bn) with bi = vi being a truthful report and bi 6= vi being a
misreport of agent i.

Each auction is defined by a pair of allocation and payment rules (g, p) with gi : V → [0, 1]m giving
allocation probability of each item to agent i and pi : V → R≥0 giving the necessary payment. Any
item is allocated at most once:

∑
i gi(b) ≤ 1 for all b ∈ V . Bidder i, with valuation vi, receives

utility ui(vi; b) = vi(gi(b)) − pi(b) for a set of bids b from all bidders. The revenue of an auction
is
∑
i∈N pi(v).

Further, let v−i be the valuation profile v without vi. b−i and V−i are used analogously. An auction
is dominant strategy incentive compatible (DSIC) if a bidders utility is maximized when report-
ing truthfully, independent of the bids of others: v′i 6= vi being a misreport, ui(vi; (vi, b−i)) ≥
ui(vi; (v′i, b−i)) holds for all vi, v′i ∈ V and bids of others b−i ∈ Vi.
An auction is ex post individually rational (IR) if each bidder always receives non-negative utility:
ui(vi; (vi, b−i) ≥ 0 for all vi ∈ Vi, b−i ∈ V−i.
Optimal auction design seeks a DSIC auction that maximizes revenue and is IR.

B.2 OPTIMAL AUCTION DESIGN WITH DEEP LEARNING

To translate optimal auction design into a learning problem (Section 2.2.2 of Dütting et al. (2020))
we take a parametrized class of auctions (gw, pw), with parameters w ∈ Rd, d ∈ N.

With expected ex post regret being the utility gain for optimal misreports, and uwi (vi; b) =
vi(g

w
i (b))− pwi (b), we can measure the deviation from DSIC:

rgti(w) = E[max
v′i∈Vi

uwi (vi; (v′i, v−i))− uwi (vi; (vi, v−i))]. (3)

Thus an auction is DSIC iff rgti(w) = 0,∀i ∈ N , except for measure zero events. We then minimize
expected negated revenue, subject to a regret constraint for each bidder and F being the valuation
distribution:

min
w∈Rd

Ev∼F

[
−
∑
i∈N

pwi (v)
]

s.t. rgti(w) = 0 ∀i ∈ N, v ∈ V (4)

For implementation with a deep learning pipeline, we formulate the empirical regret for a sample
of L valuation profiles as

r̂gti(w) =
1

L

L∑
l=1

[
max
v′i∈Vi

uwi
(
v

(l)
i ;
(
v′i, v

(l)
−i
))
− uwi (v

(l)
i ; v(l))

]
(5)

as well as the empirical loss, which we want to minimize, subject to an empirical regret constraint:

min
w∈Rd

− 1

L

L∑
l=1

n∑
i=1

pwi (v(l)) s.t. r̂gti(w) = 0 ∀i ∈ N, v ∈ V (6)

2 For a more general exposition see Section 2 of Dütting et al. (2020). Section 3 of Rahme et al. (2020) shows
another description of the additive setting.
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The allocation and payment rules are modeled as neural networks (Section 3.2 of Dütting et al.
(2020)), which ensure IR by restricting to auctions which don’t charge any bidder more than their
valuations for any allocation. This implementation is called RegretNet.

The regret constraint can be incorporated into the objective by using the technique of Lagrange
multipliers (Section 4 of Dütting et al. (2020)).

B.3 PRIOR-FREE APPROXIMATIONS TO OPTIMAL MECHANISMS

A prior-free mechanism (Section 7 of Hartline (2016)) is a mechanism (Section 9.4 of Nisan et al.
(2007)) which does not make assumptions about the valuation distribution of agents. In the case
of auction design, this would be the distribution F of the valuations v of the bidders. Since it has
a weaker informational requirement, this type of mechanism can be applied in a larger variety of
settings.

A mechanismM is a prior-free β-approximation to a benchmark (Def. 7.1. of Hartline (2016))
B if for all valuation profiles v its performance is at least a β fraction of the benchmark: M(v) ≥
1
βB(v).

In Dütting et al. (2020) auctions are the mechanisms of interest, in our setting though, we seek to
analyze the whole one-shot learner.

B.4 DIFFERENTIAL PRIVACY

Differential privacy (Dwork et al., 2006)3 gives us strong guarantees on the distinguishability of the
outcomes of a mechanism executed on adjacent datasets. A randomized mechanismM : D → R
with domain D and range R satisfies (ε, δ)-differential privacy if for any two adjacent inputs
d, d′ ∈ D and for any subset of outputs S ⊆ R it holds that

Pr[M(d) ∈ S] ≤ eε Pr[M(d′) ∈ S] + δ (7)

For the auction design context, we take adjacent datasets to be bid profiles which differ in one entry,
i.e. it would be contained in one and missing from the other.

A single application of a gaussian noise mechanism

M(d)
∆
= f(d) +N (0, S2

f · σ2) (8)

to any function f , with sensitivity Sf being the amount any single argument can change its output,

and σ the noise multiplier, satisfies (ε, δ)-differential privacy if δ ≥ 4
5e
−σε2

2 and ε ≥ 1. Since the
analysis can be applied post hoc, there are infinite (ε, δ) pairs s.t. this is fulfilled.

B.5 DEEP LEARNING WITH DIFFERENTIAL PRIVACY

To introduce differential privacy to deep learning, we can use a differentially private version of SGD,
which has two extra steps between the computation of per example gradients g(xi) and descent. The
gradients get clipped to the gradient norm bound C (which bounds sensitivity Sf ):

ḡ(xi) = g(xi)/max
(

1,
‖g(xi)‖2

C

)
(9)

Then noise is added to the gradient of each iteration, with σ being the noise multiplier, L being the
group size of the sample from the whole dataset:

g̃ =
1

L

(∑
i

ḡ(xi) +N (0, σ2C2I)

)
(10)

This way, training of neural networks can be modelled as a composition of single applications of the
gaussian mechanism Eq. (8). For details see Section 3.1. of Abadi et al. (2016).
3 The definitions used here are lifted from Abadi et al. (2016). For a more in depth exposition of
(ε, δ)-differential privacy see Def. 2.4 of Dwork & Roth (2014) and onwards.
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The bookkeeping of the privacy budget resulting from the repeated application of gaussian mecha-
nisms is handled with a moments accountant, which is introduced in McSherry (2010), Section 3.2.
of Abadi et al. (2016) describes its application to deep learning.

B.6 MECHANISM DESIGN VIA DIFFERENTIAL PRIVACY

McSherry & Talwar (2007) introduce differential privacy as a solution concept for mechanism design
problems.

For any mechanism M, truthful reporting is an ε-approximately dominant strategy (Definition
10.2 of Dwork & Roth (2014)) for player i if for every pair of types, ti, t′i ∈ T , ti being the private
information player i holds, and for every vector of types t−i from the other players, and utility
function u the following holds (in the auction setting, types are valuations):

u(ti,M(ti, t−i)) ≥ u(ti,M(t′i, t−i))− ε (11)

Using Eq. (7), at the expected utility for any (ε, 0)-differentially private mechanism M and any
non-negative function g of its range, with d, d′ ⊂ D differing only in one data point

E[g(M(d))] ≤ eεE[g(M(d′))] (12)

we can derive that (ε, 0)-differentially private mechanisms being (ε,0)-approximately dominant
strategy truthful (Section 2.1 of McSherry & Talwar (2007)), for ε ≤ 1 and utilities bounded in
[0, 1] (Full proof: Lecture 1, Claim 6, Roth (2014)).

This means, given the above constraints, when using an (ε, 0)-differentially private mechanism, no
user can cause a change of more than ε in their utility.
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