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ABSTRACT

In many statistical problems, incorporating priors can significantly improve per-
formance. However, using prior knowledge in differentially private query release
has remained underexplored, despite such priors commonly being available in the
form of public data, such as previous US Census releases. With the goal of releas-
ing statistics about a private dataset, we present PMWPub, which—unlike existing
baselines—leverages public data drawn from a related distribution as prior in-
formation. We provide a theoretical analysis and an empirical evaluation on the
American Community Survey, showing that PMWPub outperforms state-of-the-art
methods. Furthermore, our method scales well to high-dimensional data domains,
where running many existing methods would be computationally infeasible.

1 INTRODUCTION

Differential privacy (Dwork et al., 2006b) is a rigorous criterion that provides meaningful guarantees
of individual privacy while allowing for trade-offs between privacy and accuracy. In this work, we
study differentially private query release, specifically generating a private synthetic dataset: a new
dataset in which records are “fake” but the statistical properties of the original data are preserved.

In practice, generating differentially private synthetic datasets is challenging without an excessively
large private dataset, and a promising avenue for improving these algorithms is to incorporate prior
information that lessen the burden on the private data. In this paper we explore using public data as
one promising source of prior information that can be used without regard for its privacy.1 For exam-
ple, one can derive auxiliary data for the 2020 US Census release from already-public releases like
the 2010 US Census. Similarly, the Census Bureau’s American Community Survey has years of an-
nual releases that can be treated as public data for future releases. Alternatively, once national-level
statistics are computed and released, they can serve as public data for computing private statistics
over geographic subdivisions, such as states and counties. Indeed, such a hierarchy of releases is
part of the TopDown algorithm being developed for the 2020 US Census (Abowd et al., 2019).

Existing algorithms for private query release do not incorporate public data. While there is theoreti-
cal work on public-data-assisted private query release (Bassily et al., 2020), it crucially assumes that
the public and private data come from the same distribution, and does not give efficient algorithms.

Our Contributions In light of these observations, we initiate the study of using public data to
improve private query release in the more realistic setting where the public data distribution that is
related but not identical to that of the private data. We make the following contributions:

1. We present (Private) Multiplicative Weights with Public Data (PMWPub), an extension of
MWEM (Hardt et al., 2012) that incorporates public data.

1The public data may have been derived from private data, but we refer to it as “public” for our purposes as
long as the privacy concerns have already been addressed.
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Algorithm 1: PMWPub

Input: Private dataset D̃ ∈ Xn, public dataset D̂ ∈ Xm, query class Q, privacy parameter ε̃,
number of iterations T .
Let the domain be X̂ = supp(D̂), the size of the private dataset be n = |D̃|, A0 be the
distribution over X̂ given by D̂.
Initialize ε0 = ε̃√

2T
.

for t = 1 to T do
Sample query qt ∈ Q using the permute-and-flip mechanism or exponential mechanism – i.e.,

Pr[qt] ∝ exp
(ε0n

2
|q(At−1)− q(D̃)|

)
Measure: Let at = qt(D̃) +N

(
0, 1/n2ε2

0

)
. (But, if at < 0, set at = 0; if at > 1, set at = 1.)

Update: Let At be a distribution over X̂ s.t.

At(x) ∝ At−1(x) exp (qt(x) (at − qt(At−1)) /2).

end for
Output: A = avgt∈[T ]At−1

2. We analyze the theoretical privacy and accuracy guarantees of PMWPub.

3. We empirically evaluate PMWPub on the American Community Survey (ACS) data to
demonstrate that we can achieve strong performance when incorporating public data, even
when public samples come from a different distribution.

4. We show PMWPub is computationally efficient and therefore is practical for much larger
problem sizes than MWEM.

2 PUBLIC DATA ASSISTED MWEM

MWEM (Hardt et al., 2012) is an approach to answering linear queries that combines the multiplica-
tive weights update rule for no-regret learning and the exponential mechanism (McSherry & Talwar,
2007) for selecting queries. MWEM maintains a distribution over the data domain X and iteratively
improves its approximation of the distribution At given by the private dataset D̃. Our choice of ex-
tending MWEM stems from the following observations: (1) MWEM attains worst-case theoretical
guarantees that are nearly information-theoretically optimal (Bun et al., 2018); (2) MWEM achieves
state-of-the-art results in practice when it is computationally feasible to run; and (3) MWEM can be
readily adapted to incorporate “prior” knowledge that is informed by public data.

However, maintaining a distribution A over a data domain X = {0, 1}d is intractable when d is
large, requiring a runtime of O(n|Q| + T |X ||Q|)), which is exponential in d (Hardt et al., 2012).
Moreover, Ullman & Vadhan (2011) show that computational hardness is inherent for worst-case
datasets, even in the case of 2-way marginal queries. Thus, applying MWEM is often impractical
in real-world instances, prompting the development of new algorithms (Gaboardi et al., 2014; Vietri
et al., 2020) that bypass computational barriers at the expense of some accuracy.

2.1 PMWPub

We introduce PMWPub (Algorithm 1), which adapts MWEM to utilize public data in the following:

First, the approximating distribution At is maintained over the public data domain X̂ rather than
X , implying that the runtime of PMWPub is O(n|Q| + T |X̂ ||Q|)). Because |X̂ | ≤ m is often
significantly smaller than |X |, PMWPub offers improvements in both runtime and memory usage.

Second, A0 is initialized to the distribution over X̂ given by D̂. By default, MWEM initializes A0

to be uniform over the data domain X . This naı̈ve prior is appropriate for worst-case analysis, but,
in real-world settings, we can often form a reasonable prior that is closer to the desired distribu-
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tion. Therefore, PMWPub initializes A0 to match the distribution of D̂ under the assumption public
dataset’s distribution provides a better approximation of D̃.

In addition, we make two additional improvements:

Permute-and-flip Mechanism. We replace the exponential mechanism with the permute-and-flip
mechanism (McKenna & Sheldon, 2020), which like the exponential mechanism runs in linear time
but whose expected error is never higher.

Gaussian Mechanism. When measuring sampled queries, we add Gaussian noise instead of
Laplace noise. The Gaussian distribution has lighter tails, and in settings with a high degree of
composition, the scale of Gaussian noise required to achieve some fixed privacy guarantee is lower
(Canonne et al., 2020). Privacy guarantees for the Gaussian mechanism can be expressed in terms
of concentrated differential privacy and the composition theorem given by Bun & Steinke (2016).

2.2 THEORETICAL ANALYSIS

In this section, we analyze the accuracy of PMWPub under the assumption that the public and private
dataset are i.i.d. samples from two different distributions. The support of the a dataset X ∈ X ∗ is
the set supp(X) = {x ∈ X : x ∈ X}, and we denote the support of the public dataset D̂ by
X̂ = supp(D̂). We show that the accuracy of PMWPub will depend on the best mixture error
over the public dataset support X̂ , which we characterize using the best mixture error function
fD̃,Q : 2X → [0, 1] that measures a given support’s ability to approximate the private dataset D̃
over the set of queries Q. The precise definition is as follows:

Definition 2.1. For any support S ∈ 2X , the best mixture error of S to approximate a datasetD over
the queries Q is given by the function: fD,Q(S) = minµ∈∆(S) maxq∈Q

∣∣q (D)−
∑
x∈S µxq(x)

∣∣
where µ ∈ ∆(S) is a distribution over the set S with µx ≥ 0 for all x ∈ S and

∑
x∈S µx = 1.

Hardt et al. (2012) show MWEM has error scaling with
√

log(|X |) where X is the data domain.
Since PMWPub is initialized with the restricted public data domain X̂ of size m, its error in-

creases with
√

log |X̂ | ≤
√

logm. Moreover, PMWPub’s error bound includes the best-mixture

error fD̃,Q(X̂ ). Taken together, we present the following bound:

Theorem 2.2. For any private dataset D̃ ∈ Xn, set of statistical queries Q ⊂ {q : X → [0, 1]},
public dataset D̂ ∈ Xm with support X̂ , and privacy parameter ε̃ > 0, PMWPub with parameter
T = Θ

(
nε̃
√

logm
log |Q| + log(1/β)

)
outputs a distribution A on X̂ such that, with probability ≥ 1− β,

max
q∈Q

∣∣∣q(A)− q(D̃)
∣∣∣ ≤ O

√ log(|Q|) · (
√

logm+ log( 1
β ))

nε̃
+ fD̃,Q

(
X̂
) .

3 EMPIRICAL EVALUATION

We evaluate on the 2018 American Community Survey (ACS), obtained from the IPUMS USA
database (Ruggles et al., 2020). To run MWEM, we construct a lower-dimensional version of the
data. We refer to this dataset as ACS (reduced). For our private dataset, we use the 2018 ACS for
Pennsylvania (PA-18) and Georgia (GA-18). To select our public dataset, we explore the following:

Selecting across time. We consider the setting in which there exists a public dataset describing our
population at a different point in time. Using the 2020 US Census release as an example, one could
consider using the 2010 US Census as a public dataset for some differentially private mechanism.
In our experiments, we use the ACS data for Pennsylvania and Georgia from 2010.

Selecting across states. We consider the setting in which there exists a public dataset collected
concurrently from a different population. In the context of releasing state-level statistics, one can
imagine for example that some states have differing privacy laws. In this case, we can identify data
for a similar state that has been made public. In our experiments, we select a state with similar
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Figure 1: Max error for ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1} and δ = 1
n2 . Results are averaged over 5

runs, and error bars represent one standard error. The x-axis uses a logarithmic scale. We shade the
area below the best mixture error to represent max error values that are unachievable by PMWPub.

demographics to the private dataset’s state—Ohio (OH-18) for Pennsylvania and North Carolina
(NC-18) for Georgia. In addition, we select New York (NY-18) and California (CA-18).

3.1 RESULTS

In Figure 1, we compare PMWPub against baseline algorithm—DualQuery (Gaboardi et al., 2014)
and HDMM (McKenna et al., 2018)—while using different public datasets. In addition, we plot the
best mixture error function for each public dataset to approximate a lower bound on the error of
PMWPub, which we estimate by running (non-private) multiplicative weights with early stopping.
On ACS (reduced), we evalutae on 5-way marginals with a workload size of 3003 (maximum). On
the full-sized ACS, we evalute on 3-way marginals with a workload size of 4096.

We observe that on ACS (reduced) PA-18, MWEM achieves lower error than HDMM and
DualQuery at ε ≤ 0.5 (Figure 1), supporting the view that MWEM should perform well when
it is feasible to run it. Using PA-10, OH-18, and NY-18 as public datasets, PMWPub improves upon
the performance of MWEM and outperforms all three baselines. Similarly, on the full-sized ACS
datasets for Pennsylvania and Georgia, PMWPub outperforms both baselines.

Next, we present results of PMWPub when using CA-18 to provide examples where the distribution
over the public dataset’s support cannot be reweighted to answer all queries accurately. In Figure
1, we observe that when using CA-18, PMWPub performs well on ACS (reduced) PA-18. However,
on the set of queries defined for ACS PA-18 and GA-18, the best mixture error for CA-18 is high.
Moreover, we observe that across all privacy budgets ε, PMWPub achieves the best mixture error,
regardless of the number of round we run the algorithm for.

While it may be unsurprising that the support over a dataset describing California, a state with rela-
tively unique demographics, is poor for answering large sets of queries on Pennsylvania and Georgia,
one would still hope to identify this case ahead of time. One principled approach to verifying the
quality of a public dataset is to spend some privacy budget on measuring its best mixture error.
Given that finding the best mixture error is a sensitivity- 1

n query (see Appendix A), we can use the
Laplace mechanism to measure this value. For example, in the case of both PA and GA (which have
size n ≈ 105), we can measure the best mixture error with a tiny fraction of the privacy budget (such
as ε = 0.01) by adding Laplace noise with standard deviation

√
2

nε ≈ 1.414× 10−3.
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A THEORY

A.1 PRELIMINARIES

We consider a data domain X = {0, 1}d of dimension d, a private dataset D̃ ∈ Xn consisting of
the data belonging to n individuals, and a class of statistical linear queries Q. Our final objective is
to generate a synthetic dataset in a privacy-preserving way that matches the private data’s answers.
Consider a randomized mechanism M : Xn → R that takes as input a private dataset D̃ and
computes a synthetic dataset X ∈ R, whereR represents the space of possible datasets. Given a set
of queriesQ, we say that the max error of a synthetic dataset X is given by maxq∈Q |q(D̃)− q(X)|.
We begin with the definition of a statistical linear query:

Definition A.1 (Statistical linear query). Given a predicate φ and a dataset D, the linear query
qφ : Xn → [0, 1] is defined by

qφ(D) =
1

|D|
∑
x∈D

φ(x)

Defining a dataset instead as a distribution A over the domain X , the definition for a linear query qφ
then becomes qφ(A) =

∑
x∈X q(x)A(x).

One example of a statistical query class is k-way marginal queries, which we define below.

Definition A.2 (k-way marginal query). Let the data universe with d categorical attributes be X =
(X1 × . . .×Xd), where each Xi is the discrete domain of the ith attribute. A k-way marginal query
is a linear query specified by attributes A = {(Ai)i∈[k] | A1 6= . . . 6= Ak ∈ [d]} and target
y ∈ (X1 × . . .×Xk), given by

φA,y(x) =

{
1 : xa1 = y1 ∧ . . . ∧ xak = yk
0 : otherwise

where xi ∈ Xi means the ith attribute of record x ∈ X . Each marginal has a total of
∏k
i=1 |Xak |

queries, and we define a workload as a set of marginal queries.

Although we evaluate on k-way marginal queries in our experiments, we provide theoretical results
that hold for any class of linear queries.

Definition A.3 (`1-sensitivity). The `1-sensitivity of a function f : X ∗ → Rk is

∆f = max
neighboringD,D′

‖f(D)− f(D′)‖1

In the context of statistical queries, the `1-sensitivity of query captures the effect of changing an indi-
vidual in the dataset and is useful for determining the amount of perturbation required for preserving
privacy.

In our setting, we have access to a public dataset D̂ ∈ Xm containing the data of m individuals
that we can use without privacy constraints. This dataset defines a public data domain, denoted by
X̂ ⊂ X , which consists of all unique rows in D̂. We assume that both the public and private datasets
are i.i.d. samples from different distributions and use the Rényi divergence, which we define below,
as a measure for how close the two distributions are.

Definition A.4 (Rényi divergence). Let µ and ν be probability distributions on Ω. For α ∈ (1,∞),
we define the Rényi divergence of order α between µ and ν as

Dα(µ ‖ ν) =
1

1− α
log
∑
x∈Ω

µ(x)αν(x)1−α

The Rényi divergence is also used in the definition of privacy that we adopt. The output of a ran-
domized mechanismM : X ∗ → R is a privacy preserving-computation if it satisfies concentrated
differential privacy (CDP) (Dwork & Rothblum, 2016; Bun & Steinke, 2016):
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Definition A.5 (Concentrated DP). A randomized mechanism M : Xn → R is 1
2 ε̃

2-CDP, if for all
neighboring datasets D,D′ (i.e., differing on a single person), and for all α ∈ (1,∞),

Dα(M(D) ‖ M(D′)) ≤ 1

2
ε̃2α

where Dα(M(D) ‖ M(D′)) is the Rényi divergence between the distributions of M(D) and
M(D′).

Two datasets are neighboring if you can obtain one from the other by changing the data of one
individual. Definition A.5 says that a randomized mechanism computing on a dataset satisfies zCDP
if its output distribution does not change by much in terms of Rényi divergence when a single user
in the dataset is changed. Finally, any algorithm that satisfies zCDP also satisfies (approximate)
differential privacy (Dwork et al., 2006b;a):
Definition A.6 (Differential Privacy (DP)). A randomized algorithmM : X ∗ → R satisfies (ε, δ)-
differential privacy (DP) if for all neighboring databases D,D′, and every event E ⊆ R, we have

Pr[M(D) ∈ E] ≤ eε Pr[M(D′) ∈ E] + δ.

If δ = 0, we say thatM satisfies pure (or pointwise) ε-differential privacy.

A.2 THEORETICAL ANALYSIS

In this section, we analyze the accuracy of PMWPub under the assumption that the public and private
dataset are i.i.d. samples from two different distributions. The support of the a dataset X ∈ X ∗ is
the set supp(X) = {x ∈ X : x ∈ X}, and we denote the support of the public dataset D̂ by
X̂ = supp(D̂). Recall that PMWPub (Algorithm 1) takes as input a public dataset and then updates
its distribution over the public dataset’s support using the same procedure found in MWEM. We
show that the accuracy of PMWPub will depend on the best mixture error over the public dataset
support X̂ , which we characterize using the best mixture error function fD̃,Q : 2X → [0, 1] that

measures a given support’s ability to approximate the private dataset D̃ over the set of queries Q.
The precise definition is as follows:
Definition A.7. For any support S ∈ 2X , the best mixture error of S to approximate a dataset D
over the queries Q is given by the function:

fD,Q(S) = min
µ∈∆(S)

max
q∈Q

∣∣∣∣∣q (D)−
∑
x∈S

µxq(x)

∣∣∣∣∣
where µ ∈ ∆(S) is a distribution over the set S with µx ≥ 0 for all x ∈ S and

∑
x∈S µx = 1.

Intuitively, PMWPub reweights the public dataset in a differentially private manner to approximately
match the private dataset’s answers; the function fD̃,Q(X̂ ) captures how well the best possible

reweighting on X̂ would do in the absence of any privacy constraints. While running PMWPub does
not explicitly require calculating the best mixture error, in practice it may prove useful to release
it in a privacy-preserving way. We present the following lemma, which shows that fD̃,Q(X̂ ) has
bounded sensitivity.
Lemma A.8. For any support S ∈ 2X and setQ, the best mixture error function fD,Q is 1

n sensitive.
That is for any pair of neighboring datasets D,D′ of size n, |fD,Q(S)− fD′,Q(S)| ≤ 1

n .

It follows that we can release fD̃,Q(X̂ ), using the Laplace or Gaussian mechanism with magnitude
scaled by 1

n .

We show that, if the public and private datasets are drawn from similar distributions, then, with high
probability, fD̃,Q(X̂ ) is small. Note that the required size of the public dataset increases with the
divergence between the private and public distributions.

Proposition A.9. Let µ, ν ∈ ∆(X ) be distributions with D∞(µ‖ν) < ∞. Let D̃ ∼ µn and
D̂ ∼ νm be n and m independent samples from µ and ν respectively. Let X̂ be the support of D̂.
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Let Q be a finite set of statistical queries q : X → [0, 1]. Let α, β > 0. If n ≥ 8
α2 log

(
4|Q|
β

)
and

m ≥
(

32
α2 e

D2(µ‖ν) + 8
3αe

D∞(µ‖ν)
)

log
(

4|Q|+4
β

)
, then

Pr
[
fD̃,Q(X̂ ) ≤ α

]
≥ 1− β.

Proof. Note that we may assume α < 1 as the result is trivial otherwise. Let g(x) = µ(x)/ν(x).
Then 0 ≤ g(x) ≤ eD∞(µ‖ν) for all x and, for X ∼ ν, we have E[g(X)] = 1 and
E[g(X)2] = eD2(µ‖ν). Define ω ∈ ∆(X̂ ) by ωx = g(x)∑

x∈D̂ g(x) for x ∈ X̂ . Clearly fD̃,Q(X̂ ) ≤

maxq∈Q

∣∣∣q(D̃)−
∑
x∈D̂ ωxq(x)

∣∣∣.
Fix some q ∈ Q. By Hoeffding’s inequality,

Pr[|q(D̃)− q(µ)| ≥ α/4] ≤ 2 · e−α
2n/8.

For X ∼ ν, E[g(X)q(X)] = q(µ) and Var[g(X)q(X)] ≤ E[(g(X)q(X))2] ≤ E[g(X)2] =
eD2(µ‖ν). By Bernstein’s inequality,

Pr

∣∣∣∣∣∣m · q(µ)−
∑
x∈D̂

g(x)q(x)

∣∣∣∣∣∣ ≥ α

4
m

 ≤ 2 · exp

(
−α2m

32 · eD2(µ‖ν) + 8
3α · eD∞(µ‖ν)

)
.

Let m̂ =
∑
x∈D̂ g(x). Similarly,

Pr
[
|m̂−m| ≥ α

4
m
]

= Pr

∣∣∣∣∣∣m−
∑
x∈D̂

g(x)

∣∣∣∣∣∣ ≥ α

4
m


≤ 2 · exp

(
−α2m

32 ·
(
eD2(µ‖ν) − 1

)
+ 8

3 · α · eD∞(µ‖ν)

)
.

If all three of the events above do not happen, then∣∣∣∣∣∣q(D̃)−
∑
x∈D̂

ωxq(x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1n
∑
x∈D̃

q(x)− 1

m̂

∑
x∈D̂

g(x)q(x)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1n
∑
x∈D̃

q(x)− q(µ)

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

m̂

mq(µ)−
∑
x∈D̂

g(x)q(x)

∣∣∣∣∣∣+
|m̂−m|

m̂
|q(µ)|

≤ α

4
+

α
4m+ α

4m

m− α
4m

≤ α.

Taking a union bound over all q ∈ Q shows that the probability that any of these events happens is
at most

2|Q| · e−α
2n/8+(2|Q|+2) · exp

(
−α2m

32·eD2(µ‖ν)+8
3 ·α·eD∞(µ‖ν)

)
,

which is at most β if n and m are as large as the theorem requires.

Having established sufficient conditions for good public data support, we bound the worst-case
error of PMWPub running on a support X̂ . Since our method is equivalent to running MWEM
on a restricted domain X̂ , its error bound will be similar to that of MWEM. Hardt et al. (2012)
show that, if the number of iterations of the algorithm is chosen appropriately, then MWEM has
error scaling with

√
log(|X |) where X is the algorithm’s data domain. Since PMWPub is initialized

with the restricted data domain X̂ based on a public dataset of size m, its error increases with√
log |X̂ | ≤

√
logm instead. Moreover, PMWPub’s error bound includes the best-mixture error

fD̃,Q(X̂ ). Taken together, we present the following bound:

9
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Theorem A.10. For any private dataset D̃ ∈ Xn, set of statistical queries Q ⊂ {q : X → [0, 1]},
public dataset D̂ ∈ Xm with support X̂ , and privacy parameter ε̃ > 0, PMWPub with parameter
T = Θ

(
nε̃
√

logm
log |Q| + log(1/β)

)
outputs a distribution A on X̂ such that, with probability ≥ 1− β,

max
q∈Q

∣∣∣q(A)− q(D̃)
∣∣∣ ≤ O

√ log(|Q|) · (
√

logm+ log( 1
β ))

nε̃
+ fD̃,Q

(
X̂
) .

A.3 PRIVACY ANALYSIS

The privacy analysis follows from four facts: (i) Permute-and-flip satisfies ε0-differential privacy
(McKenna & Sheldon, 2020), which implies 1

2ε
2
0-concentrated differential privacy. (ii) The Gaussian

noise addition also satisfies 1
2ε

2
0-concentrated differential privacy. (iii) The composition property of

concentrated differential privacy allows us to add up these 2T terms (Bun & Steinke, 2016). (iv)
Finally, we can convert the concentrated differential privacy guarantee into approximate differential
privacy (Canonne et al., 2020).
Theorem A.11. When run with privacy parameter ε̃ > 0, PMWPub satisfies 1

2 ε̃
2-concentrated

differential privacy and, for all δ > 0, it satisfies(ε(δ), δ)-differential privacy, where

ε(δ) = inf
α>1

1

2
ε̃2α+

log(1/αδ)

α− 1
+ log(1− 1/α) ≤ 1

2
ε̃2 +

√
2 log(1/δ) · ε̃.

A.4 ADDITIONAL PROOFS

Proposition A.12. Let D̃ ∈ Xn and D̂ ∈ Xm. Let Q be a finite set of statistical queries q : X →
[0, 1]. Let ε̃ > 0 and T ∈ N. Let A be the output of Algorithm 1 with parameters ε̃ and T , query
class Q, and inputs D̃ as the private dataset and D̂ as the public dataset. Then A is a distribution on
X̂ = supp(D̂) ⊂ X . For all β ∈ (0, 1), if T ≥ 7 log(3/β), then

Pr

 maxq∈Q |q(D̃)− q(A)| ≤ 2fD̃,Q(X̂ ) +

√
4 logm
T + 4T

ε̃2n2 +
4
√

log(3/β)

ε̃n

+ 2
√

2T
ε̃n log |Q|+

√
1

2T log
(

3
β

)
 ≥ 1− β.

If we set T = Θ
(
ε̃n
√

logm
log |Q| + log(1/β)

)
, then the bound above becomes

Pr

[
max
q∈Q
|q(D̃)− q(A)| ≤ O

(
fD̃,Q(X̂ ) +

√
log |Q|
ε̃n

·
(√

logm+ log(1/β)
))]

≥ 1− β,

thus proving Theorem A.10.

Proof. We follow the analysis of Hardt et al. (2012). Let At, qt, at be as in Algorithm 1. Let
α0 = fD̃,Q(X̂ ) be the error of the optimal reweighting of the public data. Let

D∗ = arg min
D∈∆(X̂ )

max
q∈Q
|q(D)− q(D̃)|

be the optimal reweighting so that maxq∈Q |q(D∗) − q(D̃)| = α0. We define a potential function
Ψ : ∆(X̂ )→ R by

Ψ(A) = D1(D∗‖A) =
∑
x∈X̂

D∗(x) log

(
D∗(x)

A(x)

)
.

Since Ψ is a KL divergence, it follows that, for all A ∈ ∆(X̂ ),

0 ≤ Ψ(A) ≤ log

(
1

minx∈X̂ A(x)

)
.

10
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In particular, Ψ(AT ) ≥ 0 and Ψ(A0) ≤ logm, since any x ∈ X̂ must be one of the m elements of
D̂ and hence has A0(x) ≥ 1/m.

Fix an arbitrary t ∈ [T ]. For all x ∈ X̂ , we have At(x) = At−1(x) exp(qt(x)(at−qt(At−1))/2)∑
y∈X̂ At−1(y) exp(qt(y)(at−qt(At−1))/2) .

Thus

Ψ(At−1)−Ψ(At)

=
∑
x∈X̂

D∗(x) log

(
At(x)

At−1(x)

)

=
∑
x∈X̂

D∗(x) log

(
exp(qt(x)(at − qt(At−1))/2)∑

y∈X̂ At−1(y) exp(qt(y)(at − qt(At−1))/2)

)

=
∑
x∈X̂

D∗(x)qt(x)
at − qt(At−1)

2
− log

∑
y∈X̂

At−1(y) exp

(
qt(y)

at − qt(At−1)

2

)
≥ qt(D∗)

at − qt(At−1)

2
+ 1−

∑
y∈X̂

At−1(y) exp

(
qt(y)

at − qt(At−1)

2

)
(∀x > 0 log x ≤ x− 1)

≥ qt(D∗)
at − qt(At−1)

2
+ 1−

∑
y∈X̂

At−1(y)

(
1 + qt(y)

at − qt(At−1)

2
+ qt(y)2 (at − qt(At−1))2

4

)
(∀x ≤ 1 exp(x) ≤ 1 + x+ x2)

= qt(D
∗)
at − qt(At−1)

2
+ 1− 1− qt(At−1)

at − qt(At−1)

2
− E
X←At−1

[
qt(X)2

] (at − qt(At−1))2

4

= (qt(D
∗)− qt(At−1))

at − qt(At−1)

2
− E
X←At−1

[
qt(X)2

] (at − qt(At−1))2

4

≥ (qt(D
∗)− qt(At−1))

at − qt(At−1)

2
− (at − qt(At−1))2

4

=
1

4
(2qt(D

∗)− at − qt(At−1))(at − qt(At−1))

=
1

4
(qt(D̃)− qt(At−1))2 +

1

2
(qt(D

∗)− qt(D̃))(at − qt(At−1))− 1

4
(at − qt(D̃))2

=
1

4
(qt(D̃)− qt(At−1))2 +

1

2
(qt(D

∗)− qt(D̃))(qt(D̃)− qt(At−1))

+
1

2
(qt(D

∗)− qt(D̃))(at − qt(D̃))− 1

4
(at − qt(D̃))2

≥ 1

4
(qt(D̃)− qt(At−1))2 − 1

2
α0|qt(D̃)− qt(At−1)|

+
1

2
(qt(D

∗)− qt(D̃))(at − qt(D̃))− 1

4
(at − qt(D̃))2,

where the final inequality follows from the fact that |qt(D∗)− qt(D̃)| ≤ α0 by the definition of D∗.

11
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Putting together what we have so far gives

2

T
logm ≥ 2

T
(Ψ(A0)−Ψ(AT ))

=
2

T

∑
t∈[T ]

Ψ(At−1)−Ψ(At)

≥ 2

T

∑
t∈[T ]

1

4
(qt(D̃)− qt(At−1))2 − 2

T

∑
t∈[T ]

1

2
α0|qt(D̃)− qt(At−1)|

+
2

T

∑
t∈[T ]

1

2
(qt(D

∗)− qt(D̃))(at − qt(D̃))− 2

T

∑
t∈[T ]

1

4
(at − qt(D̃))2

≥ 1

2

 1

T

∑
t∈[T ]

|qt(D̃)− qt(At−1)|

2

− α0

T

∑
t∈[T ]

|qt(D̃)− qt(At−1)|

+
1

T

∑
t∈[T ]

(qt(D
∗)− qt(D̃))(at − qt(D̃))− 1

2T

∑
t∈[T ]

(at − qt(D̃))2,

where the final inequality uses the relationship between the 1-norm and 2-norm.

Now, for each t ∈ [T ] independently, at− qt(D̃) is distributed according toN (0, 1/ε2
0n

2). Thus the
sum

∑
t∈[T ](at − qt(D̃))2 follows a chi-square distribution with T degrees of freedom and mean

T
ε20n

2 . This yields the tail bound

∀κ ≥ 1 Pr

∑
t∈[T ]

(at − qt(D̃))2 ≥ κ · T

ε2
0n

2

 ≤ (κ · e1−κ)T/2 .
In addition, the noise at − qt(D̃) is independent from qt(D

∗) − qt(D̃). Hence, the sum∑
t∈[T ](qt(D

∗) − qt(D̃))(at − qt(D̃)) follows a σ2-subgaussian distribution with σ2 =

1
ε20n

2

∑
t∈[T ](qt(D

∗)− qt(D̃))2 ≤ Tα2
0

ε20n
2 . In particular,

∀λ ≥ 0 Pr

∑
t∈[T ]

(qt(D
∗)− qt(D̃))(at − qt(D̃)) ≥ λα0

√
T

ε0n

 ≤ e−λ2/2.

Set V := 1
T

∑
t∈[T ] |qt(D̃)− qt(At−1)|.

Thus, for all κ, λ ≥ 0,

Pr
[

1

2
V 2 − α0V ≤

2 logm

T
+

κ

2ε2
0n

2
+

λα0

ε0n
√
T

]
≥ 1−

(
κ · e1−κ)T/2 − e−λ2/2.

The above expression contains the quadratic inequality 1
2V

2 − α0V ≤ 2 logm
T + κ

2ε20n
2 + λα0

ε0n
√
T
.

This equation implies

V ≤ α0 +

√
α2

0 +
4 logm

T
+

κ

ε2
0n

2
+

2λα0

ε0n
√
T
≤ 2α0 +

√
4 logm

T
+

κ

ε2
0n

2
+

2λα0

ε0n
√
T
.

Now we invoke the properties of the permute-and-flip or exponential mechanism that selects qt. For
each t ∈ [T ], we have (Bassily et al., 2016, Lemma 7.1)

E
qt

[
|qt(D̃)− qt(At−1)|

]
≥ max

q∈Q
|q(D̃)− q(At−1)| − 2

ε0n
log |Q|.

12
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Since 0 ≤ |qt(D̃)− qt(At−1)| ≤ 1, we can apply Azuma’s inequality to obtain

Pr

 1

T

∑
t∈[T ]

|qt(D̃)− qt(At−1)| ≥ 1

T

∑
t∈[T ]

max
q∈Q
|q(D̃)− q(At−1)| − 2

ε0n
log |Q| − ν

 ≥ 1−e−2ν2T

for all ν ≥ 0. Finally, for A = 1
T

∑
t∈[T ]At−1, we have

max
q∈Q
|q(D̃)− q(A)| ≤ 1

T

∑
t∈[T ]

max
q∈Q
|q(D̃)− q(At−1)|

≤ 1

T

∑
t∈[T ]

|qt(D̃)− qt(At−1)|+ 2

ε0n
log |Q|+ ν

(with probability ≥ 1− e−2ν2T ))

≤ 2α0 +

√
4 logm

T
+

κ

ε2
0n

2
+

2λα0

ε0n
√
T

+
2

ε0n
log |Q|+ ν.

(with probability ≥ 1−
(
κ · e1−κ)T/2 − e−λ2/2)

Now we set ν =

√
1

2T log
(

3
β

)
, κ = 2, and λ =

√
2 log(3/β) and apply a union bound. If

T ≥ 7 log(3/β), then

Pr

 maxq∈Q |q(D̃)− q(A)| ≤ 2α0 +

√
4 logm
T + 2

ε20n
2 +

2
√

2 log(3/β)α0

ε0n
√
T

+ 2
ε0n

log |Q|+
√

1
2T log

(
3
β

)
 ≥ 1− β.

Substituting in α0 = fD̃,Q(X̂ ) ≤ 1 and ε0 = ε̃√
2T

yields the result.

We remark that the proof above uses the bound Ψ(A0) = D1

(
D∗
∥∥∥D̂) ≤ logm. This is tight in

the worst case, but is likely to be loose in practice, as the private and public datasets are likely to
be relatively similar. We could also alter Algorithm 1 to initialize A0 to be uniform on X̂ , in which
case we can replace logm with log |X̂ | in the final bound.
Lemma A.13. For any support S ∈ 2X and set of linear queries Q, the best mixture error
function fD,Q is 1

n sensitive. That is for any pair of neighboring datasets D,D′ of size n,
|fD,Q(S)− fD′,Q(S)| ≤ 1

n .

Proof. First, we show that the maximum of s-sensitive functions is an s-sensitive function and
by symmetry the minimum of s-sensitive functions is s-sensitive. For any s ≤ 1, let G = {g :
X → [0, 1]} be a class of s-sensitive functions and define a function f : X → [0, 1] as f(X) =
maxg∈G g(X), for X ∈ X .

Fix any support S ∈ 2X and neighboring dataset D,D′ with size n. Also fix the set Q and note
each query q ∈ Q is bounded in [0,1] and it’s 1

n -sensitive. Let g′ = arg maxg∈G g(D′) and g =
arg maxg∈G g(D), then for neighboring D,D′ we have

f(D)− f(D′) ≤ f(D)− g(D′) Since f(D′) ≥ g(D′)

≤ f(D)− g(D) + s Since |g(D)− g(D′)| ≤ s
= s Since f(D) = g(D)

Similarly, we can show that f(D′)− f(D) ≤ s, therefore f is s-sensitive.

Since a marginal query q ∈ Q, is 1
n -sensitive, after fixing any µ the expression

max
q∈Q

∣∣∣∣∣q(D)−
∑
x∈S

µxq(x)

∣∣∣∣∣
13
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Figure 2: Additional plots of the max error (3-way marginals and workload size of 4096) for ε ∈
{0.1, 0.15, 0.2, 0.25, 0.5, 1} and δ = 1

n2 on PA-18 (Row 1), GA-18 (Row 2), NY-18 (Row 3), and
CA-18 (Row 4). Results are averaged over 5 runs, and error bars represent one standard error. The
x-axis uses a logarithmic scale. Given the support of each public dataset, we shade the area below
the best mixture error to represent max error values that are unachievable by PMWPub.

is a max of 1
n sensitive functions, then by the argument above it is a 1

n -sensitive function. It follows
that fD,Q(S) is a minimum of 1

n -sensitive functions therefore fD,Q(S) is 1
n -sensitive.

B ADDITIONAL EMPIRICAL EVALUATIONS

B.1 EMPIRICAL EVALUATION ON ACS

We first provide additional experiments run on the 2018 ACS dataset.

B.1.1 EVALUATION ON ADDITIONAL DATA FOR STATES

In Figure 2, we plot results for ACS PA-18 and ACS GA-18 comparing PMWPub using the 2010
ACS data (PA-10 and GA-10) with the public datasets Texas (TX-18), Florida (FL-18(, and Illinois
(IL-18). Together with California and New York, these three states make up the five largest states
by population according to the 2010 U.S. Census. In addition, we present results on 2018 ACS data
for the states of New York (NY-18) and California (CA-18). To run PMWPub, we choose Texas
(TX-18), Florida (FL-18), and Illinois (IL-18) for New York and choose Texas (TX-18), Nevada
(NV-18), and New York (NY-18) for California.

14
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Figure 3: Performance comparison of PMWPub against HDMM on 3-way marginals on ACS PA-18
while varying the number of workloads. We evaluate on privacy budgets ε ∈ {0.1, 0.25, 0.5, 1} and
δ = 1

n2 and present results of PMWPub using ACS PA-10 and OH-18.

B.1.2 ADDITIONAL ANALYSIS OF PMWPub

Workload scalability. On the 2018 ACS dataset for Pennsylvania, HDMM scales poorly with respect
to workload size when compared to PMWPub. Figure 3 shows that although the maximum error
of HDMM grows significantly as we increase the number of 3-way marginal queries, the maximum
error of PMWPub remains relatively stable. Our experiments suggest that in settings in which the
goal is to release very large workloads of queries, PMWPub may be a more suitable algorithm for
achieving high accuracy.

Public data size requirements. In Figure 4, we plot the performance on ACS PA-18 of PMWPub

against baseline solutions while varying the fraction of the public dataset used. Specifically, we
sample some percentage (p ∈ {100%, 10%, 1%, 0.1%}) of rows from PA-10 and OH-18 to use as
the public dataset. PMWPub outperforms both baselines across all privacy budgets, even when only
using 1% of the public dataset (Figure 4). From a practical standpoint, these results suggest that one
can collect a public dataset that is relatively small (compared to the private dataset) and still achieve
good performance using PMWPub.

Run-time. Although running MWEM on the ACS (reduced)-PA dataset is feasible, PMWPub is
computationally more efficient. However, as a non-iterative algorithm, HDMM runs significantly
faster, presenting a trade-off between the run-time and performance of the two algorithms. An
empirical evaluation can be found in Table 1 in the appendix.

B.1.3 RUN-TIME

To numerically compare the computational efficiency of PMWPub vs. HDMM, we present run-times
on the ACS (reduced)-PA dataset in Table 1.

B.1.4 USING THE LAST ITERATE

In this work, we present theoretical guarantees of PMWPub in which we output the average distribu-
tionA = avgt≤TAt (see Algorithm 1), mimicking the output in the original formulation of MWEM.
However, Hardt et al. (2012) note that while they prove guarantees for this variant of MWEM, in

15



Published as a conference paper at ICLR 2021

Figure 4: Performance comparison on ACS PA-18 while varying the size of the public dataset.
We evaluate on 3-way marginals with a workload size of 4096 and privacy budgets defined by
ε ∈ {0.1, 0.25, 0.5, 1} and δ = 1

n2 .

Table 1: Run-time comparison between PMWPub, MWEM, and HDMM on the 2018 ACS PA and
ACS (reduced) PA, denoted as FULL and Red. respectively. We compare the per-iteration run-time
time between PMWPub (using PA-10 as the public dataset) and MWEM, as well as the total run-
time across all three algorithms. We express the total run-time of PMWPub and MWEM in terms
of the hyperparameter T , which determines the number of iterations we run each algorithm for.
Experiments are conducted using a single core on a i5-4690K CPU (3.50GHz) machine.

TIME (SECONDS)
ALGO. PER-ITER. TOTAL

RED.
PMWPub 0.185 0.185× T
MWEM 0.919 0.919× T
HDMM − 23.841

FULL
PMWPub 2.021 2.021× T
MWEM − −
HDMM − 24.236

practical settings, one can often achieve better results by outputting the distribution from the last it-
erate,AT . In Figure 5, we compare PMWPub to the variant of PMWPub that outputsAT and observe
that indeed, outputting the last iterate achieves better performance across all experiments (excluding
those in which the best mixture error of the public dataset’s support is high, i.e. CA-18).

B.1.5 IDENTIFYING PUBLIC DATASETS WITH POOR SUPPORT

In Section 3.1, we describe how using Laplace noise, one can get determine the quality of a support
by getting a noisy estimate of the best mixture error for any public dataset. While we emphasize
that this strategy is the most principled approach to ensuring the public data is viable for PMWPub,
we note that in settings like ours in which we have a validation set, one can apply additional sanity
checks. For instance, in Figure 6, we observe that PMWPub performs poorly on the validation set
when using CA-14, both in absolute terms and relative to the other public datasets. For demonstra-
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Figure 5: We compare PMWPub with the variant of PMWPub that outputs the last iterate AT for
all experiments (3-way marginals and workload size of 4096) on the (full-sized) 2018 ACS dataset,
plotting max error for ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1} and δ = 1

n2 . Results are averaged over 5
runs, and error bars represent one standard error. The x-axis uses a logarithmic scale. Given the
support of each public dataset, we shade the area below the best mixture error to represent max error
values that are unachievable by PMWPub. Using the last iterate in PMWPub improves performance
across all experiments.

tion purposes, we show in Table 2 that if we select the public dataset (at each privacy budget ε) based
solely on which public dataset performed best on the validation set, we achieve very strong results in
comparison to both baselines. Thus in practical settings, one can use validation sets in conjunction
with the best mixture error function to find a suitable public dataset (for example, one can first filter
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Figure 6: Max error on the ACS validation sets for 3-way marginals with a workload size of 4096
with privacy ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1} and δ = 1

n2 . Results are averaged over 5 runs, and
error bars represent one standard error. The x-axis uses a logarithmic scale. Left: 2014 ACS for
Pennsylvania. Right: 2014 ACS for Georgia.

Table 2: Max error (averaged over 5 runs, best results in bold) comparison on the 2018 ACS
(reduced)-PA, 2018 ACS-PA, and 2018 ACS-GA datasets. At each privacy budget parametrized
by ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1} and δ = 1

n2 , PMWPub uses the public dataset (and correspond-
ing hyperparameter T ) that achieves the lowest max error on the validation set.

DATASET ALGO. ε = 0.1 ε = 0.15 ε = 0.2 ε = 0.25 ε = 0.5 ε = 1

ACS (RED.)-PA
PMWPub 0.0301 0.0197 0.0196 0.0172 0.0097 0.0067
HDMM 0.1883 0.1267 0.0951 0.0782 0.0392 0.0193
DualQuery 0.1115 0.0871 0.0816 0.0625 0.0473 0.0330

ACS-PA
PMWPub 0.0499 0.0458 0.0332 0.0298 0.0195 0.0141
HDMM 0.2360 0.1506 0.1104 0.0908 0.0497 0.0233
DualQuery 0.2289 0.1908 0.1639 0.1526 0.1086 0.0816

ACS-GA
PMWPub 0.0753 0.0523 0.0470 0.0380 0.0244 0.0175
HDMM 0.2939 0.1972 0.1500 0.1190 0.0581 0.0306
DualQuery 0.2615 0.2117 0.1904 0.1709 0.1212 0.0910

out poor public datasets using a validation set and then find the best mixture error of any remaining
candidates).

B.2 EMPIRICAL EVALUATION ON ADULT

To provide results on a different dataset, we also run experiments on ADULT in which we construct
public and private datasets from the overall dataset.

B.2.1 DATA

ADULT. We evaluate algorithms on the ADULT dataset from the UCI machine learning dataset
repository (Dua & Graff, 2017). We construct private and public datasets by sampling with replace-
ment rows from ADULT of size 0.9N and 0.1N respectively (where N is the number of rows in
ADULT). Thus, we frame samples from ADULT as individuals from some population in which there
exists both a public and private dataset trying to characterize it (with the former being significantly
smaller).

18



Published as a conference paper at ICLR 2021

Figure 7: Max error on 3-way marginals across privacy budgets ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1}
where δ = 1

n2 and the workload size is 256. Results are averaged over 5 runs, and error bars
represent one standard error. Each public dataset is constructed by sampling from ADULT with
some bias ∆ over the attribute sex (labeled as PMWPub (∆)).

B.2.2 RESULTS

When sampled without bias, the public and private datasets come from the same distribution, and
so the public dataset itself already approximates the distribution of the private dataset well. Con-
sequently, we conduct additional experiments by sampling from ADULT according to the attribute
sex with some bias. Specifically, we sample females with probability r + ∆ where r ≈ 0.33 is the
proportion of females in the ADULT dataset. In Figure 7, we observe that running PMWPub with
a public dataset sampled without bias (∆ = 0) achieves very low error across all privacy budgets,
and when using a public dataset sampled with low bias (|∆| ≤ 0.2), PMWPub still outperforms both
baselines. However, when the public dataset is extremely biased (∆ ∈ {0.45, 0.65}), the perfor-
mance of PMWPub deteriorates, with HDMM outperforming it at ε ∈ {0.5, 1}. Therefore, we again
show under settings in which the public and private distributions are relatively similar, PMWPub

achieves strong performance.

C EXPERIMENTAL SETUP DETAILS

We provide additional information regarding our experiments

C.1 DATASET

ACS In total, we select 67 attributes, giving us a data domain with dimension 287 and size ≈
4.99× 1018 To run MWEM, we also construct a lower-dimensional version of the data. We refer to
this data domain as ACS (reduced), which has dimension 33 and a size of 98304. For our private
dataset, we use the 2018 ACS for the state of Pennsylvania (PA-18) and Georgia (GA-18). To select
our public dataset, we explore the following:

ADULT. In total, the dataset has 13 attributes, and the data domain has dimension 146 and support
size ≈ 7.32× 1011.

Attributes for our experiments on ACS, ACS (reduced), and ADULT:

• ACS: ACREHOUS, AGE, AVAILBLE, CITIZEN, CLASSWKR, DIFFCARE, DIFF-
EYE, DIFFHEAR, DIFFMOB, DIFFPHYS, DIFFREM, DIFFSENS, DIVINYR, EDUC,
EMPSTAT, FERTYR, FOODSTMP, GRADEATT, HCOVANY, HCOVPRIV, HINSCAID,

19



Published as a conference paper at ICLR 2021

HINSCARE, HINSVA, HISPAN, LABFORCE, LOOKING, MARRINYR, MARRNO,
MARST, METRO, MIGRATE1, MIGTYPE1, MORTGAGE, MULTGEN, NCHILD,
NCHLT5, NCOUPLES, NFATHERS, NMOTHERS, NSIBS, OWNERSHP, RACA-
MIND, RACASIAN, RACBLK, RACE, RACOTHER, RACPACIS, RACWHT, RE-
LATE, SCHLTYPE, SCHOOL, SEX, SPEAKENG, VACANCY, VEHICLES, VET01LTR,
VET47X50, VET55X64, VET75X90, VET90X01, VETDISAB, VETKOREA, VETSTAT,
VETVIETN, VETWWII, WIDINYR, WORKEDYR

• ACS (reduced): DIFFEYE, DIFFHEAR, EMPSTAT, FOODSTMP, HCOVPRIV, HIN-
SCAID, HINSCARE, OWNERSHP, RACAMIND, RACASIAN, RACBLK, RACOTHER,
RACPACIS, RACWHT, SEX

• ADULT: sex, income>50K, race, relationship, marital-status, workclass, occupation,
education-num, native-country, capital-gain, capital-loss, hours-per-week, age

In addition, we discretize the following continuous attributes (with the number of bins after prepro-
cessing) into categorical attributes:

• ACS: AGE (10)
• ACS (reduced): AGE (10)
• ADULT: capital-gain (16), capital-loss (6), hours-per-week (10), age (10)

C.2 HYPERPARAMETERS

On the ACS dataset, we select hyperparameters for PMWPub using 5-run averages on the corre-
sponding validation sets (treated as private) derived from the 2014 ACS release. Specifically, we
evaluate Pennsylvania (PA-14) using PA-10 and OH-14, Georgia (GA-14) using GA-10 and NC-
14, and both using CA-14, TX-14, NY-14, FL-14, and IL-14. In all other cases, we simply report
the best performing five-run average across all hyperparameter choices. We report hyperparameters
used across all experiments in Table 3. Note that HDMM does not have hyperparameters.

Table 3: Hyperparameter selection for experiments on all datasets.

Method Parameter Values

PMWPub T
300, 250, 200, 150,

125, 100, 75, 50,
25, 10, 5

MWEM T
300, 250, 200, 150,

125, 100, 75, 50,
25, 10, 5

DualQuery samples 500 250 100 50
η 5 4 3 2

C.3 EMPIRICAL OPTIMIZATIONS

Following a remark made by Hardt et al. (2012) for optimizing the empirical performance of
MWEM, we apply the multiplicative weights update rule using sampled queries qi and measure-
ments ai from previous iterations i. However, rather than use all past measurements, we choose
queries with estimated error above some threshold. Specifically at each iteration t, we calculate
the term ci = |qi(At) − ai| for i ≤ t. In random order, we apply multiplicative weights using all
queries and measurements, indexed by i, where ci ≥ ct

2 , i.e. queries whose noisy error estimates are
relatively high. In our implementation of MWEM and PMWPub, we use this optimization. We also
substitute in the permute-and-flip and Gaussian mechanisms when running MWEM.

C.4 BASELINES

We provide additional background information regarding our baseline algorithms.
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DualQuery. Similar to MWEM, DualQuery (Gaboardi et al., 2014) frames query release as a
two-player game, but it reverses the roles of the data and query players. Gaboardi et al. (2014)
prove theoretical accuracy bounds for DualQuery that are worse than that of MWEM and show that
on low-dimensional datasets where running MWEM is feasible, MWEM outperforms DualQuery.
However, DualQuery employs optimization heuristics and is often more computationally efficient
and scales to a wider range of query release problems than MWEM.

HDMM. Unlike MWEM and DualQuery, which solve the query release problem by generating
synthetic data, the High-Dimensional Matrix Mechanism (McKenna et al., 2018) is designed to
directly answer a workload of queries. By representing query workloads compactly, HDMM selects
a new set of “strategy” queries that minimize the estimated error with respect to the input workload.
The algorithm then answers the “strategy” queries using the Laplace mechanism and reconstructs the
answers to the input workload queries using these noisy measurements. With the US Census Bureau
incorporating HDMM into its releases (Kifer, 2019), the algorithm offers a particularly suitable
baseline for privately answering statistical queries on the ACS dataset.
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