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ABSTRACT

Graph Neural Network (GNN) research is rapidly growing thanks to the capacity
of GNNs to learn representations from graph-structured data. However, central-
izing a massive amount of real-world graph data for GNN training is prohibitive
due to user-side privacy concerns, regulation restrictions, and commercial com-
petition. Federated learning (FL), a trending distributed learning paradigm, aims
to solve this challenge while preserving privacy. Despite recent advances in vi-
sion and language domains, there is no suitable platform for the federated train-
ing of GNNs. To this end, we introduce FedGraphNN, an open research fed-
erated learning system and the benchmark to facilitate GNN-based FL research.
FedGraphNN is built on a unified formulation of federated GNNs and supports
commonly used datasets, GNN models, FL algorithms, and flexible APIs. We also
include a new molecular dataset, hERG, to promote research exploration. Our
experimental results present significant challenges from federated GNN training:
federated GNNs perform worse in most datasets with a non-I.I.D split than central-
ized GNNs; the GNN model that performs the best in centralized training may not
hold its advantage in the federated setting. These results imply that more research
effort is needed to unravel the mystery of federated GNN training. Moreover, our
system performance analysis demonstrates that the FedGraphNN system is af-
fordable to most research labs with a few GPUs. We maintain the source code at
https://github.com/FedML-AI/FedGraphNN.

1 INTRODUCTION

Graph Neural Networks (GNN) are state-of-the-art models that learn representations from complex
graph-structured data in various domains such as drug discovery (Rong et al., 2020b), social network
recommendation (Wu et al., 2018a; Sun et al., 2019; He et al., 2019b), and traffic flow modeling
(Wang et al., 2020b; Cui et al., 2019). However, for reasons such as user-side privacy, regulation
restriction, and commercial competition, there are surging real-world cases in which graph data is
decentralized, limiting the data size of a single party (client). For example, in the AI-based drug
discovery industry, pharmaceutical research institutions would significantly benefit from the private
data of another institution, but neither cannot afford to disclose their private data for commercial rea-
sons. Federated Learning (FL) is a distributed learning paradigm with provable privacy guarantees
(McMahan et al., 2017; Kairouz et al., 2019; He et al., 2019a).

Despite FL being successfully applied in domains like computer vision (Liu et al., 2020; Hsu et al.,
2020) and natural language processing (Hard et al., 2018; Ge et al., 2020), FL has yet to be widely
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adopted in the domain of graph machine learning. There are multiple reasons for this: 1. Most
existing FL libraries, as summarized by (He et al., 2020b) do not support GNNs. Given the com-
plexity of graph data, the dynamics of training GNNs in a federated setting may be different from
training vision or language models. A fair and easy-to-use benchmark is essential to distinguish the
advantages of different GNN models and FL algorithms; 2. The definition of federated GNNs is
vague in current literature. This makes it difficult for researchers who focus on SGD-based feder-
ated optimization algorithms to understand challenges in federated GNNs ; 3. Applying existing FL
algorithms to GNNs is nontrivial and requires significant engineering effort to transplant and repro-
duce existing algorithms to GNN models and graph datasets. Recent works (Wang et al., 2020a;
Meng et al., 2021; Wu et al., 2021), only use the naive FedAvg algorithm (McMahan et al., 2017),
which we demonstrate is sub-optimal in many cases.

To address these issues, we present an open-source federated learning system for GNNs, namely
FedGraphNN, that enables the training of a variety of GNN models effectively and efficiently in
a federated setting as well as benchmarks in non-I.I.D. graph datasets (e.g., molecular graphs). We
first formulate federated graph neural networks (Section 2). Under this formulation, we design
a federated learning system to support federated GNNs with a curated list of FL algorithms and
provide low-level APIs for algorithmic research customization and deployment (Section 3). We then
provide a benchmark on commonly used molecular datasets and GNNs. We also contribute a large-
scale federated molecular dataset named hERG for further research exploration (Section C). Our
experiments show that the straightforward deployment of FL algorithms for GNNs is sub-optimal
(Section 4). Finally, we highlight future directions for federated GNNs (Section 5).

2 FORMULATION: FEDERATED GRAPH NEURAL NETWORKS

We consider a graph level GNN-based federated learning1 setting, depicted in Figure 1, where graph
datasets are dispersed over multiple edge servers that cannot be centralized for training due to pri-
vacy or regulation restrictions. For instance, compounds in molecular trials (Rong et al., 2020b)
or knowledge graphs for recommendation systems (Chen et al., 2020) may not be shared across
entities because of intellectual property concerns. Under this setting, we assume that there are K
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(k). Each client owns a GNN
model (an L-layer MPNN(Gilmer et al., 2017; Rong et al., 2020c)) to learn graph-level representa-
tions. Multiple clients are interested in collaborating through a server to improve their GNN models
without necessarily revealing their graphs.

Figure 1: Formulation of FedGraphNN (Federated Graph Neural Network)

MPNN performs the forward pass in two phases: a message-passing phase and a readout phase. The
message passing phase contains two steps: First, the model gathers and transforms the neighbors’
messages. Then, the model uses aggregated messages to update node hidden states. Mathematically,

1Different types of GNN-based FL are explained in Appendix A
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for client k, a L-layer MPNN is formalized as:
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(k)
i is the kth client’s node features, ` is the layer index, AGG is the aggregation

function (e.g., in the GCN model, the aggregation function is a simple SUM operation), Ni is the
neighborhood set of node i (e.g., 1-hop neighbors), and M
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function which takes the hidden state of current node hi, the hidden state of the neighbor node hj

and the edge features ei,j as inputs. U (k,`+1)
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feature m
(k,`+1)
i . After propagating through an L-layer MPNN, the readout phase computes a

feature vector for downstream tasks (e.g. graph-level). For example, we can obtain the whole graph
representation using some readout function Rθ (·) according to:
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To formulate GNN-based FL, we define W = {Mθ,Uθ,Rθ} as the overall learnable weights in
client k. In general, W is independent of graph structure (i.e., GNN models are normally inductive
and generalize to unseen graphs). Consequently, we formulate GNN-based FL as a distributed
optimization problem as follows:

min
W
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that measures the local empirical risk over the heterogeneous graph datasetDk. L is the loss function
of the global GNN model. To solve this problem, we utilize FedAvg (McMahan et al., 2017). It is
important to note here that in FedAvg, the aggregation function on the server merely averages model
parameters. We use GNNs inductively, i.e. the model is independent of the structure of the graphs it
is trained on. Thus, no topological information about graphs on any client is required on the server
during parameter aggregation. Other advanced algorithms such as FedOPT (Reddi et al., 2020) and
FedGKT (He et al., 2020a) can also be applied.

3 FEDGRAPHNN SYSTEM DESIGN

We develop an open source federated learning system for GNNs, named FedGraphNN, which in-
cludes implementations of standard baseline datasets, models, and federated learning algorithms for
GNN-based FL research. FedGraphNN aims to enable efficient and flexible customization for fu-
ture exploration. As shown in Figure 2 in the appendix, FedGraphNN is built based on FedML
research library (He et al., 2020b) which is a widely used FL library, but without any GNN sup-
port as yet. To distinguish FedGraphNN over FedML, we color-coded the modules that specific to
FedGraphNN. In the lowest layer, FedGraphNN reuses FedML-core APIs but further supports
tensor-aware RPC (remote procedure call), which enables the communication between servers lo-
cated at different data centers (e.g., different pharmaceutical vendors). An enhanced security and
privacy primitive modules are added to support techniques in upper layers. The layer above supports
plug and play operation of common GNN models such as GraphSage and GAT. We provide dedi-
cated data loaders and splitters to handle non-I.I.D. nature of graph datasets. Users can either reuse
our data distribution or manipulate the non-I.I.D.ness by setting hyperparameters. For details of the
system design and benchmark details, we refer the readers to Appendix B and C.

4 BENCHMARK AND EXPERIMENTS

Benchmarking Dataset: In the latest release, we use MoleculeNet (Wu et al., 2018b), a molecule
machine learning benchmark, as the data source to generate our non-I.I.D. benchmark datasets using
the partition algorithm Latent Dirichlet Allocation (LDA) (He et al., 2020b). In addition, we provide
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a new dataset, named hERG, related to the cardiac toxicity and collected from (Kim et al., 2021;
Gaulton et al., 2017) with data cleaning. Table 2 summarizes all datasets we used in experiments.
Figure 4 shows each dataset’s distribution.

Result of Model Accuracy on Non-I.I.D. Partitioning: Experiments were conducted on a GPU
server equipped with 8 NVIDIA Quadro RTX 5000 (16GB GPU memory). We built the benchmark
with FedAvg algorithm for three GNN models (GCN, GAT, and GraphSage). We run experiments
on both classification and regression tasks. Hyper-parameters are tuned (sweeping) by grid search
(see Section D for the search space). After hyper-parameter tuning, we report all results in Table
1 and Table 5. For each result, the optimal hyper-parameters can be found in the Appendix E. For
more details, please refer to the Appendix D.

There are multiple takeaways: 1. When graph datasets are small, FL accuracy is on par with (or
even better than) centralized learning. 2. But when dataset sizes grow, FL accuracy becomes worse
than the centralized approach. In larger datasets, the non-I.I.D. nature of graphs leads to an accuracy
drop. 3. Our results show that the best model in the centralized setting may not be the best for
the non-I.I.D. federated setting. Interestingly, we find that GAT suffers the largest performance
compromise on 5 out of 9 datasets. This may be due to the sensibility of the attention calculation on
the non-I.I.D. settings. Hence, additional research is needed to understand the nuances of training
GNNs in a federated setting and bridge this gap.

Table 1: Classification results (higher is better)

Dataset Non-I.I.D. GNN Federated Performance MoleculeNet Score on Score on
(samples) Partition Method Model Optimizer Metric Results Centralized Training Federated Training

SIDER LDA GCN
FedAvg ROC-AUC 0.638

0.6476 0.6266 (↓ 0.0210)
with α = 0.2 GAT 0.6639 0.6591 (↓ 0.0048)

(1427) 4 clients GraphSAGE 0.6669 0.6700 (↑ 0.0031)

BACE LDA GCN
FedAvg ROC-AUC 0.806

0.7657 0.6594 (↓ 0.1063)
with α = 0.5 GAT 0.9221 0.7714 (↓ 0.1507)

(1513) 4 clients GraphSAGE 0.9266 0.8604 (↓ 0.0662)

Clintox LDA GCN
FedAvg ROC-AUC 0.832

0.8914 0.8784 (↓ 0.0130)
with α = 0.5 GAT 0.9573 0.9129 (↓ 0.0444)

(1478) 4 clients GraphSAGE 0.9716 0.9246 (↓ 0.0470)

BBBP LDA GCN
FedAvg ROC-AUC 0.690

0.8705 0.7629 (↓ 0.1076)
with α = 2 GAT 0.8824 0.8746 (↓ 0.0078)

(2039) 4 clients GraphSAGE 0.8930 0.8935 (↑ 0.0005)

Tox21 LDA GCN
FedAvg ROC-AUC 0.829

0.7800 0.7128 (↓ 0.0672)
with α = 3 GAT 0.8144 0.7186 (↓ 0.0958)

(7831) 8 clients GraphSAGE 0.8317 0.7801 (↓ 0.0516)

*Note: to reproduce the result, please use the same random seeds we set in the library.

System Performance Analysis : We also present system performance analysis when using Mes-
sage Passing Interface (MPI) as the communication backend. The results are summarized in Table
4. Even on large datasets, Federated training can be completed under 1 hour using only 4 GPUs,
except the QM9 dataset, which requires hours to finish training. FedGraphNN thus provides an
efficient mapping of algorithms to the underlying resources, thereby making it attractive for deploy-
ment. The training time using RPC is also evaluated, but results similar to using MPI. Note that
RPC is useful for realistic deployment when GPU/CPU-based edge devices can only be accessed
via public IP addresses due to locating in different data centers. We will provide detailed test results
in such a scenario in our future work.

5 CONCLUSION AND FUTURE WORKS

In this paper, we designed a federated learning (FL) system and benchmark for federated graph
neural networks (GNN), named FedGraphNN including implementations of common baseline
datasets, models, and federated learning algorithms. Our system performance analysis shows that
GNN-based FL research is affordable to most research labs. We hope FedGraphNN can serve as
an easy-to-follow research platform for researchers to explore exciting problems in the intersection
of federated learning and graph neural networks. Here we highlight some future research directions
that deserve more efforts: 1. Supporting more graph datasets and GNN models for diverse appli-
cations; 2. Optimizing the system to accelerate the training speed for large-scale graph datasets; 3.
Proposing advanced FL algorithms or GNN models to mitigate the accuracy gap on datasets with
non-IIDness; 4. Real-world graph data often has limited labels. However, existing FL algorithms
are mainly for supervised learning. Exploring semi-supervised or self-supervised learning methods
is essential toward realistic GNN-based FL applications.
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for privacy-preserving node-classification under non-IID data using Shamir’s secret sharing. (Jiang
et al., 2020) propose a secure aggregation method to learn dynamic representations from multi-user
graph sequences. Recently, (Wang et al., 2020a) use the hybrid method of federated learning and
meta-learning to solve the semi-supervised graph node classification problem in decentralized social
network dataset. (Meng et al., 2021) attempt to protect the node-level privacy using a edge-cloud
partitioned GNN model for spatio-temporal forecasting task using node-level traffic sensor datasets.
Finally, (Wu et al., 2021) propose a federated recommendation system with GNNs.

Our library is still in its early stage. Our vision is that FedGraphNN should cover four types
of GNN-based federated learning: 1.Graph level. We believe molecular machine learning is a
paramount application in this setting, where many small graphs are distributed between multiple
edge devices; 2. Sub-graph level. This scenario typically pertains to social networks or knowledge
graphs that need to be partitioned into many small sub-graphs due to data barriers between different
departments in a giant company, as demonstrated in Wu et al. (2021). 3. Node level. When the
privacy of a specific node in a graph is important, node-level GNN-based FL is useful in practice.
The IoT setting is a good example Zheng et al. (2020); 4. Link level is also a promising direction
that is relevant when the privacy of edges (eg: connections in a social network) is of importance.

Although the current version of FedGraphNN only contains graph-level GNN-based FL, other
scenarios are also in our plan.

B MORE DETAILS OF SYSTEM DESIGN

Figure 2: Overview of FedGraphNN System Architecture Design

Deploying federated learning algorithms to existing internal systems in cross-silo institutes faces
several challenges:

1. Both different institutes and different subsystems in an institute have heterogeneous data
schemes (different feature space, different labels for the same data point, different formats);

2. Datasets or features are scattered in different subsystems in an institute;
3. The FL client software should be compatible to existing system (OS platform, system ar-

chitecture, API design pattern).

In general, frequent and large-scale deployment of updates, monitoring, and debugging is challeng-
ing; running ML workloads on an edge server is hampered by the lack of a portable, fast, small
footprint, and flexible runtime engine for on-device training (Kairouz et al., 2019, Section 7).

To address these deployment challenges, we plan to develop FedML Client SDK, which has
three key modules, Data Collector and Manager, Training Manager, and Model

8
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Category Dataset # Tasks Task Type # Compounds Average # of Nodes Average # of Edges Rec - Metric
Quantum Mechanics QM9 (Gaulton et al., 2012) 12 Regression 133885 8.80 27.60 MAE

Physical Chemistry
ESOL (Delaney, 2004) 1 Regression 1128 13.29 40.65 RMSE

FreeSolv(Mobley & Guthrie, 2014) 1 Regression 642 8.72 25.60 RMSE
Lipophilicity (Gaulton et al., 2012) 1 Regression 4200 27.04 86.04 RMSE

Biophysics hERG(Gaulton et al., 2016; Kim et al., 2021) 1 Regression 10572 29.39 94.09 RMSE
BACE (Subramanian et al., 2016) 1 Classification 1513 34.09 36.89 ROC-AUC

Physiology

BBBP (Martins et al., 2012) 1 Classification 2039 24.03 25.94 ROC-AUC
SIDER (Kuhn et al., 2016) 27 Classification 1427 33.64 35.36 ROC-AUC

ClinTox (Gayvert et al., 2016) 2 Classification 1478 26.13 27.86 ROC-AUC
Tox21 (tox, 2017) 12 Classification 7831 18.51 25.94 ROC-AUC

Table 2: Summary of Molecular Machine Learning Datasets

Serving, as shown in Figure 2. In essence, the three modules inside FedML Client SDK
builds up a pipeline that manages a model’s life cycle, from federated training to personalized
model serving (inference). Unifying three modules of a pipeline into a single SDK can simplify
the system design. Any subsystem in an institute can integrate FedML Client SDK with a host
process, which can be the backend service or desktop application. We can create multiple repli-
cas on multiple servers in the institute. More specially, Data Collector and Manager is a
distributed computing system that can collect scattered datasets or features from multiple servers
to Training Manager. Such collection can also keep the raw data in the original server with
RPCs (remote procedure call), which can only access the data during training. After obtaining all
necessary datasets for federated training, Training Manager will start federated training using
algorithms supported by FedML-API. Once training has been completed, Model Serving can
request the trained model to be deployed for inference. Under this SDK abstraction, we plan to ad-
dress the aforementioned challenges (1) and (2) within the Data Collector and Manager.
As for challenge (3), we plan to make FedML Client SDK compatible with any operating sys-
tems (Linux, Android, iOS) with a cross-platform abstraction interface design. Overall, we hope
FedML Client SDK could be a lightweight and easy-to-use SDK for federated learning among
diverse cross-silo institutes.

Figure 3: Example code for benchmark evaluation with FedGraphNN

C FEDGRAPHNN BENCHMARK: DATASETS, MODELS, AND ALGORITHMS

Non-I.I.D. Datasets. To facilitate the research for GNN-based federated learning, we plan to sup-
port various graph datasets with nonIIDness in different domains such as molecule machine learn-
ing, knowledge graph, and recommendation system. In the latest release, we use MoleculeNet (Wu
et al., 2018b), a molecule machine learning benchmark, as the data source to generate our non-I.I.D.
benchmark datasets. Specially, we use the unbalanced partition algorithm Latent Dirichlet Alloca-
tion (LDA) (He et al., 2020b) to partition datasets in the MoleculeNet benchmark. In addition, we
provide a new dataset, named hERG, which is related to the cardiac toxicity and collected from
(Kim et al., 2021; Gaulton et al., 2017) with data cleaning. Table 2 summarizes all datasets we used
in experiments. Figure 4 shows each dataset’s distribution.

C.1 MOLECULAR DATASET DETAILS

Table 2 summarizes the necessary information of benchmark datasets (Wu et al., 2018b). The details
of each dataset are listed below:
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Molecular Classification Datasets

• BBBP (Martins et al., 2012) involves records of whether a compound carries the permeabil-
ity property of penetrating the blood-brain barrier.

• SIDER (Kuhn et al., 2016), or Side Effect Resource, dataset consists of marketed drugs
with their adverse drug reactions. The available

• ClinTox (Gayvert et al., 2016) includes qualitative data of drugs both approved by the
FDA and rejected due to the toxicity shown during clinical trials.

• BACE (Subramanian et al., 2016) is collected for recording compounds which could act as
the inhibitors of human β-secretase 1 (BACE-1) in the past few years.

• Tox21(tox, 2017) is a dataset which records the toxicity of compounds.

Molecular Regression Datasets

• QM9 (Ramakrishnan et al., 2014) is a subset of GDB-13, which records the computed
atomization energies of stable and synthetically accessible organic molecules, such as
HOMO/LUMO, atomization energy, etc. It contains various molecular structures such as
triple bonds, cycles, amide, epoxy, etc .

• hERG (Gaulton et al., 2017; Kim et al., 2021) is a dataset which records the gene (KCNH2)
that codes for a protein known as Kv11.1 responsible for its contribution to the electrical
activity of the heart to help the coordination of the heart’s beating.

• ESOL (Delaney, 2004) is a small dataset documenting the water solubility(log solubility in
mols per litre) for common organic small molecules.

• Lipophilicity (Gaulton et al., 2012) which records the experimental results of oc-
tanol/water distribution coefficient for compounds.

• FreeSolv (Mobley & Guthrie, 2014) contains the experimental results of hydration free
energy of small molecules in water.

Dataset Splitting. We apply random splitting as advised in (Wu et al., 2018b). Dataset partition
is 80% training, 10% validation and 10% test. We plan to support the scaffold splitting (Bemis &
Murcko, 1996) specificaslly for moelcular machine learning datasets as a future work.

C.2 GNN MODELS AND FEDERATED LEARNING ALGORITHMS.

In the latest release, FedGraphNN supports GCN (Kipf & Welling, 2016), GAT (Veličković et al.,
2018), and GraphSage (Hamilton et al., 2017). The readout function currently supported is a simple
multilayer perceptron (MLP). Users can easily plug their customized GNN models and readout
functions into our framework. For FL algorithms, besides FedAvg (McMahan et al., 2017), other
advanced algorithms such as FedOPT (Reddi et al., 2020) and FedGKT (He et al., 2020a) are also
supported. GNN algortihms are listed as follows:

• Graph Convolutional Networks (Kipf & Welling, 2016) is a GNN model which is a 1st

order approximation to spectral GNN models.
• GraphSAGE (Hamilton et al., 2017) is a general inductive GNN framework capable of

generating node-level representations for unseen data.
• Graph Attention Networks (Veličković et al., 2018) is the first attention-based GNN

model. Attention is computed in a message-passing fashion.

C.3 FEATURE EXTRACTION PROCEDURE FOR MOLECULES

The feature extraction is in two steps:

1. Atom-level feature extraction and Molecule object construction using RDKit (Landrum,
2006).

2. Constructing graphs from molecule onbjects using NetworkX (Hagberg et al., 2008).
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Atom features, shown in Table 3, are the atom features we used exactly same as in (Rong et al.,
2020a).

Features Size Description

atom type 100 Representation of atom (e.g., C, N, O), by its atomic number
formal charge 5 An integer electronic charge assigned to atom
number of bonds 6 Number of bonds the atom is involved in
chirality 5 Number of bonded hydrogen atoms
number of H 5 Number of bonded hydrogen atoms
atomic mass 1 Mass of the atom, divided by 100
aromaticity 1 Whether this atom is part of an aromatic system
hybridization 5 SP, SP2, SP3, SP3D, or SP3D2

Table 3: Atom features

C.4 NON-I.I.D. PARTITION

The alpha value for latent Dirichlet allocation (LDA) in each non-IID graph dataset can be found in
Table 1 and 5. The data distribution for each dataset is illustrated in Figure 4.

D MORE EXPERIMENTAL DETAILS

The hyper-parameters reported in Section E are based on the hyper-parameter sweeping (grid
search). We further provide the curve of test score (accuracy) during training for each dataset with
a specific model. We hope these visualized training results can be an useful reference for future
research exploration.

E HYPER-PARAMETERS
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Figure 5: Tox21: test score during sweeping
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Figure 6: hERG: test score during sweeping

Table 4: Training time with FedAvg on GNNs (Hardware: 8 x NVIDIA Quadro RTX 5000 GPU
(16GB/GPU); RAM: 512G; CPU: Intel Xeon Gold 5220R 2.20GHz).

SIDER BACE Clintox BBBP Tox21 FreeSolv ESOL Lipo hERG QM9

Wall-clock Time
GCN 5m 58s 4m 57s 4m 40s 4m 13s 15m 3s 4m 12s 5m 25s 16m 14s 35m 30s 6h 48m
GAT 8m 48s 5m 27s 7m 37s 5m 28s 25m 49s 6m 24s 8m 36s 25m 28s 58m 14s 9h 21m

GraphSAGE 2m 7s 3m 58s 4m 42s 3m 26s 14m 31s 5m 53s 6m 54s 15m 28s 32m 57s 5h 33m

Average FLOP
GCN 697.3K 605.1K 466.2K 427.2K 345.8K 142.6K 231.6K 480.6K 516.6K 153.9K
GAT 703.4K 612.1K 470.2K 431K 347.8K 142.5K 232.6K 485K 521.3K 154.3K

GraphSAGE 846K 758.6K 1.1M 980K 760.6K 326.9K 531.1K 1.5M 1.184M 338.2K

Parameters
GCN 15.1K 13.5K 13.6K 13.5K 14.2K 13.5K 13.5K 13.5K 13.5K 14.2K
GAT 20.2K 18.5K 18.6K 18.5K 19.2K 18.5K 18.5K 18.5K 18.5K 19.2K

GraphSAGE 10.6K 8.9K 18.2K 18.1K 18.8K 18.1K 18.1K 269K 18.1K 18.8K

*Note that we use the distributed training paradigm where each client’s local training uses one GPU. Please refer our code for details.
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(a) hERG (#clients: 4, alpha: 3) (b) ESOL (#clients: 4, alpha: 2) (c) FreeSolv (#clients: 4, alpha:
0.5)

(d) BACE (#clients: 4, alpha: 0.5) (e) QM9 (#clients: 8, alpha: 3) (f) Clintox (#clients: 4, alpha: 0.5)

(g) PCBA (#clients: 8, alpha: 3) (h) Tox21 (#clients: 8, alpha: 3) (i) BBBP (#clients: 4, alpha: 2)

(j) SIDER (#clients: 4, alpha: 0.2) (k) LIPO (#clients: 8, alpha: 2)

Figure 4: Unbalanced Sample Distribution (Non-I.I.D.) for Molecular Datasets

For each task, we utilize grid search to find the best results. Table 6 & 7 lists all the hyper-parameters
range used in our experiments. All hyper-parameter tuning is run on a single GPU. The best hyper-
parameters for each dataset and model Table 8,9,10, & 11 For molecule tasks ,batch-size is kept fixed
since the molecule-level task requires us to have mini-batch is equal to 1. Also, number of GNN
layers were fixed to 2 because having too many GNN layers result in over-smoothing phenomenon
as shown in (Li et al., 2018). For all experiments, we used Adam optimizer.
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Table 5: Regression results (lower is better)

Dataset Non-I.I.D. GNN Federated Performance MoleculeNet Score for Score for
Partition Method Model Optimizer Metric Result Centralized Training Federated Training

FreeSolv LDA GCN
FedAvg RMSE 1.40 ± 0.16

1.5787 2.7470 (↑ 1.1683)
with α = 0.5 GAT 1.2175 3.1080 (↑ 1.8905)

(642) 4 clients GraphSAGE 1.3630 1.6410 (↑ 0.2780)

ESOL LDA GCN
FedAvg RMSE 0.97 ± 0.01

1.0190 1.4350 (↑ 0.4160)
with α = 2 GAT 0.9358 1.3740 (↑ 0.4382)

(1128) 4 clients GraphSAGE 0.8890 1.1860 (↑ 0.2970)

Lipo LDA GCN
FedAvg RMSE 0.655 ± 0.036

0.8518 1.1460 (↑ 0.2942)
with α = 2 GAT 0.7465 1.0040 (↑ 0.2575)

(4200) 8 clients GraphSAGE 0.7078 0.7788 (↑ 0.0710)

hERG LDA GCN
FedAvg RMSE -

0.7257 0.7944 (↑ 0.0687)
with α = 3 GAT 0.6271 0.7322 (↑ 0.1051)

(10572) 8 clients GraphSAGE 0.7132 0.7265 (↑ 0.0133)

QM9 LDA GCN
FedAvg MAE 2.35

14.78 21.075 (↑ 6.295)
with α = 3 GAT 12.44 23.173 (↑ 10.733)

(133885) 8 clients GraphSAGE 13.06 19.167 (↑ 6.107)

*Note: to reproduce the result, please use the same random seeds we set in the library.

Table 6: Hyper-parameter Range for Centralized Training

hyper-parameter Description Range

learning rate Rate of speed at which the model learns. [0.00015, 0.0015, 0.015, 0.15]
dropout rate Dropout ratio [0.2, 0.3, 0.5, 0.6]
node embedding dimension Dimensionality of the node embedding [16, 32, 64, 128, 256]
hidden layer dimension Hidden layer dimensionality [16, 32, 64, 128, 256]
readout embedding dimension Dimensionality of the readout embedding [16, 32, 64, 128256]
graph embedding dimension Dimensionality of the graph embedding [16, 32, 64, 128, 256]
attention heads Number of attention heads required for GAT 1-7
alpha LeakyRELU parameter used in GAT model 0.2

Table 7: Hyper-parameter Range for Federated Learning

hyper-parameter Description Range

learning rate Rate of speed at which the model learns. [0.00015, 0.0015, 0.015, 0.15]
dropout rate Dropout ratio [0.3, 0.5, 0.6]
node embedding dimension Dimensionality of the node embedding 64
hidden layer dimension Hidden layer dimensionality 64
readout embedding dimension Dimensionality of the readout embedding 64
graph embedding dimension Dimensionality of the graph embedding 64
attention heads Number of attention heads required for GAT 1-7
alpha LeakyRELU parameter used in GAT model 0.2
rounds Number of federating learning rounds [10, 50, 100]
epoch Epoch of clients 1
number of clients Number of users in a federated learning round 4-10

13



ICLR2021 - Workshop on Distributed and Private Machine Learning (DPML)

Table 8: Hyperparameters for Molecular Classification Task

Dataset Score & Parameters GCN GAT GraphSAGE

BBBP

ROC-AUC Score 0.8705 0.8824 0.8930
learning rate 0.0015 0.015 0.01
dropout rate 0.2 0.5 0.2

node embedding dimension 64 64 64
hidden layer dimension 64 64 64

readout embedding dimension 64 64 64
graph embedding dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None

BACE

ROC-AUC Score 0.9221 0.7657 0.9266
learning rate 0.0015 0.001 0.0015
dropout rate 0.3 0.3 0.3

node embedding dimension 64 64 16
hidden layer dimension 64 64 64

readout embedding dimension 64 64 64
graph embedding dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None

Tox21

ROC-AUC Score 0.7800 0.8144 0.8317
learning rate 0.0015 0.00015 0.00015
dropout rate 0.4 0.3 0.3

node embedding dimension 64 128 256
hidden layer dimension 64 64 128

readout embedding dimension 64 128 256
graph embedding dimension 64 64 128

attention heads None 2 None
alpha None 0.2 None

SIDER

ROC-AUC Score 0.6476 0.6639 0.6669
learning rate 0.0015 0.0015 0.0015
dropout rate 0.3 0.3 0.6

node embedding dimension 64 64 16
hidden layer dimension 64 64 64

readout embedding dimension 64 64 64
graph embedding dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None

ClinTox

ROC-AUC Score 0.8914 0.9573 0.9716
learning rate 0.0015 0.0015 0.0015
dropout rate 0.3 0.3 0.3

node embedding dimension 64 64 64
hidden layer dimension 64 64 64

readout embedding dimension 64 64 64
graph embedding dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None
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Table 9: Hyperparameters for Federated Molecular Classification Task

Dataset Score & Parameters GCN + FedAvg GAT + FedAvg GraphSAGE + FedAvg

BBBP

ROC-AUC Score 0.7629 0.8746 0.8935
number of clients 4 4 4

learning rate 0.0015 0.0015 0.015
dropout rate 0.3 0.3 0.6

Node Embedding Dimension 64 64 64
Hidden Layer Dimension 64 64 64

Readout Embedding Dimension 64 64 64
Graph Embedding Dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None

BACE

ROC-AUC Score 0.6594 0.7629 0.8604
Number of Clients 4 4 4

Learning Rate 0.0015 0.0015 0.0015
Dropout Rate 0.5 0.3 0.6

Node Embedding Dimension 64 1.05± 0.10 16
Hidden Layer Dimension 64 1.05± 0.10 64

Readout Embedding Dimension 64 1.05± 0.10 64
Graph Embedding Dimension 64 1.05± 0.10 64

attention heads None 2 None
alpha None 0.2 None

Tox21

ROC-AUC Score 0.7128 0.7714 0.7801
Number of Clients 4 4 4

Learning Rate 0.0015 0.15 0.00015
Dropout Rate 0.6 0.6 0.3

Node Embedding Dimension 64 64 64
Hidden Layer Dimension 64 64 64

Readout Embedding Dimension 64 64 64
Graph Embedding Dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None

SIDER

ROC-AUC Score 0.6266 0.6591 0.67
Number of Clients 4 4 4

Learning Rate 0.0015 0.0015 0.0015
Dropout Rate 0.6 0.3 0.6

Node Embedding Dimension 64 64 16
Hidden Layer Dimension 64 64 64

Readout Embedding Dimension 64 64 64
Graph Embedding Dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None

ClinTox

ROC-AUC Score 0.8784 0.9160 0.9246
Number of Clients 4 4 4

Learning Rate 0.0015 0.0015 0.015
Dropout Rate 0.5 0.6 0.3

Node Embedding Dimension 64 64 64
Hidden Layer Dimension 64 64 64

Readout Embedding Dimension 64 64 64
Graph Embedding Dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None
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Table 10: Hyperparameters for Molecular Regression Task)

Dataset Score &Parameters GCN GAT GraphSAGE

Freesolv

RMSE Score 0.8705 0.8824 0.8930
learning rate 0.0015 0.015 0.01
dropout rate 0.2 0.5 0.2

node embedding dimension 64 64 64
hidden layer dimension 64 64 64

readout embedding dimension 64 64 64
graph embedding dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None

ESOL

RMSE Score 0.8705 0.8824 0.8930
learning rate 0.0015 0.015 0.01
dropout rate 0.2 0.5 0.2

node embedding dimension 64 64 64
hidden layer dimension 64 64 64

readout embedding dimension 64 64 64
graph embedding dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None

Lipophilicity

RMSE Score 0.8521 0.7415 0.7078
learning rate 0.0015 0.001 0.001
dropout rate 0.3 0.3 0.3

node embedding dimension 128 128 128
hidden layer dimension 64 64 64

readout embedding dimension 128 128 128
graph embedding dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None

hERG

RMSE Score 0.7257 0.6271 0.7132
learning rate 0.001 0.001 0.005
dropout rate 0.3 0.5 0.3

node embedding dimension 64 64 64
hidden layer dimension 64 64 64

readout embedding dimension 64 64 64
graph embedding dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None

QM9

RMSE Score 14.78 12.44 13.06
learning rate 0.0015 0.015 0.01
dropout rate 0.2 0.5 0.2

node embedding dimension 64 64 64
hidden layer dimension 64 64 64

readout embedding dimension 64 64 64
graph embedding dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None
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Table 11: Hyperparameters for Federated Molecular Regression Task

Dataset Parameters GCN + FedAvg GAT + FedAvg GraphSAGE + FedAvg

FreeSolv

RMSE Score 2.747 3.508 1.641
Number of Clients 4 8 4

learning rate 0.0015 0.00015 0.015
dropout rate 0.6 0.5 0.6

node embedding dimension 64 256 64
hidden layer dimension 64 128 64

readout embedding dimension 64 256 64
graph embedding dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None

ESOL

RMSE Score 1.435 1.374 1.185
Number of Clients 4 4 4

learning rate 0.0015 0.0015 0.0015
dropout rate 0.5 0.3 0.3

node embedding dimension 64 256 64
hidden layer dimension 64 128 64

readout embedding dimension 64 256 64
graph embedding dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None

Lipophilicity

RMSE Score 1.146 1.004 0.7788
Number of Clients 4 4 4

learning rate 0.0015 0.0015 0.0015
dropout rate 0.3 0.3 0.6

node embedding dimension 64 256 256
hidden layer dimension 64 128 256

readout embedding dimension 64 256 256
graph embedding dimension 64 64 256

attention heads None 2 None
alpha None 0.2 None

hERG

RMSE Score 0.7944 0.7322 0.7265
Number of Clients 8 8 8

learning rate 0.0015 0.0015 0.0015
dropout rate 0.2 0.3 0.3

node embedding dimension 64 64 64
hidden layer dimension 64 64 64

readout embedding dimension 64 64 64
graph embedding dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None

QM9

MAE Score 21.075 23.173 19.167
Number of Clients 8 8 8

learning rate 0.0015 0.00015 0.0015
dropout rate 0.2 0.5 0.3

node embedding dimension 64 256 64
hidden layer dimension 64 128 64

readout embedding dimension 64 256 64
graph embedding dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None

17


	Introduction
	Formulation: Federated Graph Neural Networks
	FedGraphNN System Design
	Benchmark and Experiments
	Conclusion and Future Works
	Related Works
	More Details of System Design
	FedGraphNN Benchmark: Datasets, Models, and Algorithms
	Molecular Dataset Details
	GNN Models and Federated Learning Algorithms.
	Feature Extraction Procedure for Molecules
	Non-I.I.D. Partition

	More Experimental Details
	Hyper-parameters

