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ABSTRACT

Neural Architecture Search (NAS) is a collection of methods to craft the way neu-
ral networks are built. We apply this idea to Federated Learning (FL), wherein
neural networks with predefined architecture are trained on the client/device data.
This approach is not optimal as the model developers can’t observe the local
data, and hence, are unable to build highly accurate and efficient models. NAS is
promising for FL which can search for global and personalized models automat-
ically for the non-IID data. Most NAS methods are computationally expensive
and require fine tuning after the search, making it a two-stage complex process
with possible human intervention. Thus there is a need for end-to-end NAS which
can run on the heterogeneous data and resource distribution typically seen in a
FL scenario. In this paper, we present an effective approach for direct federated
NAS which is hardware agnostic, computationally lightweight, and a one-stage
method to search for ready-to-deploy neural network models. Our results show
an order of magnitude reduction in resource consumption while edging out prior
art in accuracy. This opens up a window of opportunity to create optimized and
computationally efficient federated learning systems.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al. (2017)) is an approach to solving a machine learning prob-
lem where many clients generate their own data and collaborate under the orchestration of a central
server to train the model, often to preserve privacy of the original data (e.g., in regulated verticals
like healthcare). Mathematically, it can be represented by the following optimization problem:

min
w
F(w), where F(w) :=

K∑
i=1

νiFi(w) (1)

Here K is the total number of clients, νi ≥ 0 and
∑
i νi = 1. Fi is the local objective function

for client i and is typically taken as L(xi, yi, w, α), that is, the loss of the prediction on local data
(xi, yi) with model parameters w and architecture α. The term νi can be considered as the relative
effect of each client, and is user defined with two typical values being νi = 1/n or νi = ni/n where
ni is the number of samples of client i and n =

∑
i ni.

A unique characteristic of FL is that each client’s data is private to itself and not exchanged or
transferred either with the server or other clients. Here, clients can be organizations like hospitals
which have patients’ data or edge devices like smart cameras or smartphones, referred to as cross-
silo and cross-device setting, respectilvely. We’ll use the term clients in this article for simplicity,
without loss of generality. Multiple such clients generate data locally, mostly in a non identical and
independently distributed (IID) fashion.

To design an efficient and accurate model, model developers need to exhaustively examine the char-
acteristics of the data, which is not possible in FL due to the invisibility of data from all the clients to
∗Correspondence to anubhgar@cisco.com
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the machine learning engineers. The current practice in FL is to apply a predefined neural network
architecture for the given task. By this we mean a neural network with predefined architecture, and
not a pretrained neural network. It involves many iterations of model selection and hyperparameter
tuning requiring many rounds of training, which is extremely expensive and difficult to achieve on
the limited computational resources and low communication bandwidth scenarios. This makes the
objective function in Eqn. 1 hard to optimize. The objective in Eqn. 1 trains a global model for all
the clients. If the clients’ data is small and IID, the single global model learnt via federated learning
should perform better than local models. A core challenge in FL is that the clients continuously
generate data in a non-IID manner (Li et al. (2020)), which makes a single predefined model hard to
fit for all clients. Moreover, the predefined architecture design may have some modules which are
redundant for a particular client’s dataset and could lead to useless computation for that client. We
refer to Kairouz et al. (2019) for an in-depth discussion.

To solve this problem, we make the use of Neural Architecture Search (NAS), which automatically
searches for the optimal neural network architecture for the given task. There are many search
methods in NAS, majority of which can be classified as using reinforcement learning, evolutionary
algorithms, and gradient descent. Compared to other approaches, gradient based differentiable ar-
chitecture search methods are order of magnitude cheaper with state-of-the-art performance. These
methods employ a one-shot weight-shared model trained using gradient descent. Most of these
methods involve a search stage, in which a child architecture is derived from the one-shot model and
a retraining stage, in which a bigger network based on the child architecture is trained on the spec-
ified dataset. Thus, it is a two-stage process which involves analyses of the target data for building
the final network. For example, DARTS (Liu et al. (2019)) based methods search for a cell using
a proxy dataset in the architecture search phase. For best performance, this cell is stacked many
times according to the final dataset and retrained on it. Moreover, due to the bi-level optimization of
DARTS, it is extremely computationally expensive and not fit for edge devices like smartphones (see
section C in appendix for further analysis). These methods are developed for centralized training
and cannot be used directly in the FL setting. To address these issues, we propose an end-to-end
NAS approach developed for the FL setting which can search for the optimal architecture directly
on the given task, data, and hardware. It is a one-stage hardware adaptable method which searches
for a ready-to-deploy neural network on any type of client hardware, ranging from hospitals having
multi-GPU clusters to edge devices like smartphones or other IoT devices. The main contributions
of our work can be summarized as follows:

1. To the best of our knowledge, it is the first work to combine federated NAS for both cross-
silo and cross-device environment, where the data is partitioned by examples.

2. We provide an efficient plug-and-play solution to search for a ready-to-deploy network in
the federated setting. Our one-stage architecture search method eliminates the need for
retraining of the derived network on the clients.

3. As shown by experiments, our approach takes significantly less communication rounds and
computation resources compared to previous methods. For the same number of communi-
cation rounds, our approach achieves an average test accuracy improvement of upto 10%
compared to predefined models with FedAvg (McMahan et al. (2017)).

Related work has been discussed in section B of the appendix.

2 OUR APPROACH

2.1 PROBLEM DEFINITION

As mentioned earlier, the definition of a typical federated learning problem is given by Eqn. (1).
In previous work, the architecture α of the model is fixed and the optimization is only on model
parameters w, as can be seen from Eqn. (1). In contrast, we learn the architecture along with the
model weights, α being a variable parameter. The local objective functionFi of each client therefore
is :

EZ∼pα(Z)
[Lw(xi, yi, Z)] (2)

HereZ is a matrix of all structural decisions, α is the architecture encoding, pα(Z) is the distribution
of architectures, and L is the loss function. In other words, the local objective is to find the best α to

2



ICLR 2021 - Workshop on Distributed and Private Machine Learning (DPML)

optimize the expected performance on the given dataset (xi, yi). The global objective is to maximize
the predictive performance on the given task by collectively learning the model parameters along
with the architecture α.

2.2 DIRECT FEDERATED NAS

2.2.1 PRELIMINARIES

The objective function (Eqn. (2)) can be optimized by searching on a supernet, called the parent
network. The parent network is a directed acyclic graph (DAG) G = (V, E). Nodes v ∈ V represents
the intermediate representations and edges e ∈ E represent some transformation of them (e.g., pool-
ing, convolution). There are multiple edges eij between pair of nodes vi and node vj to comprise all
possible architectures in the search space. Every edge has a weight θ, called the architecture param-
eter. These architecture parameters are trained by a NAS algorithm and for every pair of nodes, the
architecture weight with the highest value is chosen to derive the final network, also called the child
network.

2.2.2 SEARCHING FOR CHILD NETWORK

Our architecture search method is build upon DSNAS (Hu et al. (2020)). It is a task-specific end-to-
end NAS method which searches for the child network in one stage. Algorithm 1 details the specifics
of searching for the final network.

Algorithm 1 Client Local Search
Require : parent network, operation parameters w, θth, total epochs E

for epoch e = 1, 2, 3, ..., E do
1. Sample one-hot random variables Z from pθ(Z)
2. Construct child network with w according to Z, multiply a 1 after each feature map X
3. Get a batch from data and forward to get L
4. Backward L to both w and 1, backward log pθ(Z) to θ
5. Update w with ∂L

∂w , update θ with ∂ log pθ(z)
∂θ

∂L
∂1

6. Prune edges with weight θ < θth
end

2.2.3 FEDERATED NAS

The objective in Eqn. 1 can be optimized by updating the global architecture and weight parameters,
θ and w respectively by averaging the clients’ values. Algorithm 2 in appendix A specifies such an
orchestration by a central server.

3 EXPERIMENTS AND RESULTS

To evaluate our approach, we do several experiments for the cross-silo and cross-device setting.
We take the target task as image classification in our experiments. We use the FedML (He et al.
(2020b)) research library for our experiments. The search space and datasets description is provided
in appendix D.

Table 1 compares the test accuracy and search cost of our method with FedNAS (He et al. (2020a)),
which applies MiLeNAS (He et al. (2020c)) architecture search for federated learning. We achieve
remarkable computational efficiency improvement. As our method is one-stage, we record the total
time taken to search and train. We would like to point out that though the parameters of the final net-
work is more for our approach, the memory consumption during search is orders of magnitude lesser
making our approach fit for low memory hardware. Table 2 compares the accuracy with different
number of clients and time taken. It can be seen that the approach is robust to different clients and
scale. Although FedNAS shows it can beat model-predefined FL during searching, its architecture
search method is based on two-stage MiLeNAS which may not work well during inference on more
difficult dataset such as ImageNet and CINIC-10.
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Figure 1: Average test accuracy vs. com-
munication rounds for the non-IID CIFAR-
10 data distribution on 8 clients for 150
rounds. DFNAS achieves an accuracy
of 88.31%, MobileNetV1 83.41%, and
ResNet56 77.78% with FedAvg for same
number of rounds.
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Figure 2: Average test accuracy vs. com-
munication rounds for the non-IID CINIC-
10 data distribution on 16 clients for 250
rounds. DFNAS achieves an accuracy of
68.35%, while ShuffleNetV1 with FedAvg
67.70% for same number of rounds.

Figure 1 compares our approach with FedAvg algorithm on two pre-defined neural networks. DF-
NAS achieves more than 10% higher test accuracy on Resnet56 (He et al. (2016)) and 5% on Mo-
bileNet (Howard et al. (2017)) for same number of communication rounds. The lower accuracy of
DFNAS for a few rounds is because it searches for the best architecture from the search space while
for other curves it is fixed. Figure 2 compares DFNAS with ShuffleNetV1 (Zhang et al. (2018)) us-
ing the FedAvg algorithm on the cross-device setting. The total number of clients are 16, both the
methods have equal parameters (< 1M ) and the data distribution is non-IID. For same number of
communication rounds, we achieve better performance than the pre-defined architecture.

Table 1: DFNAS achieves state-of-the art performance on CIFAR-10 dataset. The results are for 8
clients having non-IID data distribution. Since our method is one-stage, the total time consisting of
search and training is recorded.

Method Test Accuracy (%) Params (M) Total time (GPU Days) Memory (MB)
FedNAS 91.43 ± 0.13 0.33 1 10,793

DFNAS (ours) 92.11 ± 0.1 2.1 0.18 1,437

Table 2: Comparison of our approach with different clients on the CIFAR-10 dataset. The data
distribution is IID for more than one clients.

Clients Test Accuracy (%) Params (M) Total time (GPU Days)
2 93.53 ± 0.10 2.1 0.83
4 93.31 ± 0.12 2.1 0.43
8 92.79 ± 0.15 2.1 0.18

4 CONCLUSIONS

In this paper, we addressed the inefficiency of the current practice of applying predefined neural
network architecture to federated learning systems. We presented a plug-and-play solution DF-
NAS, which is as simple as training one single neural network yet provides an improvement over
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current approaches in terms of accuracy, computation and communication bandwidth. Our work
highlights the inefficiency of applying the DARTS based NAS methods directly on the federated
learning setting. We believe that this general approach could be applied to a variety of federated
learning problems.
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A FEDERATED ARCHITECTURE SEARCH

Algorithm 2 Direct Federated NAS
Require : Hardware configuration, the total number of rounds T

Build the parent network based on hardware configuration
Initialize w, θ of parent network. Call it w0 and θ0
for round t = 0, 1, 2, ..., T do

Select K clients St
for each client i ∈ St in parallel do

Send wt, θt to client. Run Client Algorithm (Algorithm 1 from paper) and get updated
parameters, wit+1 and θit+1

end
Update architecture θt+1←

∑K
i
ni
n θ

i
t

Update weight wt+1←
∑K
i

ni
n w

i
t

end

The above algorithm requires the device type as input, which can be GPU or CPU, and the parent
network is constructed accordingly. The server initializes the weight and architecture parameters of
the parent network. For every round, the server selects K clients from the pool of available clients.
In each round, the the local search process is run by every client in parallel and the architecture and
weight parameters are trained on their respective dataset. After the clients have finished the local
search, the architecture θ and weight w parameters of the parent network is updated by the formulae
in Algorithm 2. This process is repeated for all rounds or until the model is converged.

This method gives a ready-to-deploy network with no need of retraining a larger network constructed
by stacking the DAG’s learnt on a small network. Our method is hardware agnostic, which can
search on the target hardware type directly by constructing the parent network accordingly. It learns
the architecture directly on the federated datasets and target hardware without any proxy or manual
intervention.

B RELATED WORK

Federated Learning: The approach to train shared model on decentralized data without trans-
ferring or exchanging it by aggregating locally computed updates was termed Federated Learning
(McMahan et al. (2017)). They introduced the Federated Averaging algorithm, in which the clients
use SGD to train the shared model weights which are averaged by the central server. There are four
core challenges in achieving the objective in Eq. 1 — statistical heterogeneity of data, hardware
heterogeneity of clients, low communication bandwidth, and privacy (Li et al. (2020)). Our method
solves for first two of the above mentioned challenges directly and it solves the third challenge in-
directly by eliminating the need for large number of communication rounds required due to model
refinement. We would like to point out that standard privacy preserving approaches like differential
privacy can be applied to our method to preserve server and client privacy.

Neural Architecture Search: Zoph & Le (2017) used a controller RNN and trained it with rein-
forcement learning to search for architectures. Since then, numerous NAS methods have been stud-
ied. Based on major search strategy, NAS methods can be classified into Reinforcement Learning
(Baker et al. (2016); Cai et al. (2018); Zhong et al. (2018); Zoph et al. (2018); Pham et al. (2018)),
Neuro-Evolution (Real et al. (2017); Suganuma et al. (2018); Liu et al. (2018b); Real et al. (2019);
Elsken et al. (2019)) and gradient-based (Liu et al. (2019); Cai et al. (2019); Xie et al. (2019); Nay-
man et al. (2019); Xu et al. (2020b); Chen et al. (2019a)). Other methods include Random Search
(Li & Talwalkar (2019)), Bayesian Optimization (Jin et al. (2019); Kandasamy et al. (2018) and
some custom methods (Chen et al. (2019b); Kamath et al. (2018); Carlucci et al. (2019); Liu et al.
(2018a)).
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Federated Neural Architecture Search (FNAS): There are several works on FNAS which apply
some NAS algorithm to the federated learning setting. In (He et al. (2020a)), clients use MiLeNAS
(He et al. (2020c)) to search for an architecture for the cross-silo FL setting. In DP-FNAS (Singh
et al. (2020)), in each round clients compute weight and architecture parameter gradients on a subset
of local data which are sent to server for averaging in two steps, thus requiring double commu-
nication rounds than our approach. DP-FNAS utilize DARTS with additionally applying random
Gaussian noise to local gradients to preserve differential privacy. Though they achieve differential
privacy by adding random noise to gradients, there is a tradeoff between validation accuracy and
the level of privacy. Both of these approaches have large memory requirement than our approach.
They are two-stage methods which require parameter retraining after the architecture search, thus
requiring large number of communication rounds. DecNAS (Xu et al. (2020a)) applies model com-
pression and pruning techniques to a pre-trained model based on the NetAdapt (Yang et al. (2018))
framework for fitting on the given resource budget. Concretely, they prune the convolution filters
with the smallest value based on the `2 norm. DecNAS searched architecture has a performance
limitation as that of the pre-trained model used with a key challenge to fit on the non-IID data in the
FL setting. (Zhu & Jin (2020)) proposes a multi-objective double sampling evolutionary approach
to FNAS which is computationally expensive.

C DISCUSSIONS

The computational complexity of our method is the same as training a single neural network since
we sample only one path in the parent supernet DAG at every step instead of considering all the
candidate paths, which requires the whole network to be stored in the memory. Specifically, if P , Q
and R denote the forward time, backward time and memory consumption of a sampled subnetwork
from the search space, then DARTS-like methods take nP , nQ and nR, where n is the number of
operations while DFNAS takes the same as a single network, that is, P , Q and R.

D SEARCH SPACE AND DATASET

Search space: Our parent network is built using shuffle blocks (Zhang et al. (2018)). For the
cross-silo evaluation, there are 4 choices for each block in the parent network, with kernel sizes 3,
5, 7, and a xception block. For the cross-device experiments, there are 3 candidates for each choice
block in the parent network. For further details about our search space, we refer to (Hu et al. (2020)).
Our search space comprises of 420 neural networks architectures for the cross-silo setting and 312

for the cross-device setting.

Dataset : For cross-silo setting, we perform our experiments on the CIFAR-10 dataset for both
IID and non-IID distribution. For the IID case, we divide the training dataset homogeneously be-
tween the clients in each round. We generate the non-IID dataset similar to (He et al. (2020a)), for
fair comparison, that is, by splitting the training images into K clients in an unbalanced manner:
sampling pc ∼ Dir(α) where Dir is the dirichlet distribution with α = 0.5 and allocating a pc,k
proportion of the samples of class c to local client k. Similar to (He et al. (2020a)) we test different
methods on the test data held by the central server. CIFAR-10 has 50,000 training and 10,000 test
images, all coloured, of size 32x32, and split equally in 10 classes.

For the cross-device setting, we use the CINIC-10 dataset, which has 90,000 training and test
coloured images of size 32x32 split equally in 10 classes. The sampling strategy is same as that
of the cross-silo setting.
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