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ABSTRACT

Many problems in machine learning rely on multi-task learning (MTL), in which
the goal is to solve multiple related machine learning tasks simultaneously. MTL
is particularly relevant for privacy-sensitive applications in areas such as health-
care, finance, and IoT computing, where sensitive data from multiple, varied
sources are shared for the purpose of learning. In this work, we formalize notions
of multi-task privacy via joint differential privacy (JDP), a relaxation of Differen-
tial Privacy (DP) for mechanism design and distributed optimization. We then pro-
pose a differentially private algorithm for the commonly-used mean-regularized
MTL objective. We analyze our objective and solver, providing certifiable guaran-
tees on both privacy and utility. Our initial work provides groundwork for privacy-
preserving multi-task learning and highlights several interesting directions of fu-
ture study.

1 INTRODUCTION

Multi-task learning (MTL) aims to solve multiple learning tasks simultaneously, while exploiting
similarities/differences across tasks (Caruana,|1997). Multi-task learning is commonly used in appli-
cations that warrant strong privacy guarantees. For example, MTL has been explored in healthcare
applications, as a way to learn over diverse populations or between multiple institutions (Baytas
et al., 2016; [Suresh et al., 2018}, |Harutyunyan et al.l [2019); in financial forecasting, to combine
knowledge from multiple indicators or across organizations (Ghosn & Bengiol [1997; |Cheng et al.,
2020); and in IoT computing, as an approach for learning in federated networks of heterogeneous
devices (Smith et al., [2017). While MTL can significantly improve accuracy in these applications,
there is a dearth of work studying the privacy implications of learning in multi-task settings.

In this work, we develop and theoretically analyze methods for differentially private multi-task learn-
ing. Motivated by applications including federated learning and personalization, we focus on pro-
viding tfask-level privacy guarantees by incorporating the notion of differential privacy (DP) Dwork
et al.[(2006). Informally, an algorithm satisfies DP if its output is insensitive to the change of the
any single individual’s data. In the context of MTL, task-level DP directly would require the entire
collection of predictive models to be insensitive to any change of the private data in any single task.
Such a privacy requirement becomes too stringent, as it implies that the predictive model for task %
must have little dependence on the training data for task k, which prevents usefulness of the model.
To circumvent this, we leverage joint differential privacy (JDP) (Kearns et al.|[2014), which requires
that for each task k, the set of output predictive models for all other tasks except & is insensitive to
k’s private data.

Using these definitions of privacy, we then develop new learning algorithms for MTL with rigor-
ous privacy and utility guarantees. Specifically, we propose DP Mean-Regularized MTL, a simple
framework to learn multiple tasks privately. We show that our method achieves (¢, §)-JDP (Section
[3.3). We also analyze the convergence of our method on convex objectives, which demonstrates a
tradeoff between privacy and utility.
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2 BACKGROUND AND RELATED WORK

Multi-task learning. In multi-task learning, the goal is to solve multiple related ML tasks simul-
taneously. Our work focuses on the general and widely-used formulation of multi-task relationship
learning, as formalized in Section MTL is particularly useful in privacy-sensitive applications
where datasets are shared between multiple, heterogeneous entities (Baytas et al., 2016} Smith et al.,
2017;|Ghosn & Bengio, [1997). In these cases, it is natural to view each data source (e.g., financial
institution, hospital, mobile phone) as a separate ‘task’ that is learned in union with the other tasks.
This allows data to be shared, but the models to be personalized to each data silo. In the setting of
federated learning, MTL is particularly helpful to train personalized model for each local device.
Several examples of MTL application in personalized FL are training a mean regularized objec-
tive (Hanzely & Richtarik, [2020; [Hanzely et al., 2020), clustering (Ghosh et al., [2020; |Sattler et al.,
2020), interpolate between the local and global model (Deng et al.,|2020; [Mansour et al., 2020), etc.

Differentially private MTL has also been explored in a few prior works with different problem set-
tings. [Wu et al.|(2020) proposed a MTL setting where a common feature representation shared by all
tasks is first learned, followed by task specific models on top of this private representation. [Xie et al.
(2017) proposed a method to preserve data-level privacy by representing the parametrized model for
each task as the sum of a public weight that is shared by all tasks and a task specific weight that is
only updated locally. However, both differ from our focus on multi-task relationship learning (stated
in Equation[I). Geyer et al| (2017) studied differentially private multitask relationship learning for
the mean estimation problem. Their method provides a guarantee that model of each task is dif-
ferentially private. In other words, this requires the model to be insensitive to changes in its own
task’s training set. In this work, we focus on task-level privacy, i.e. protecting the private data of
one task from other tasks. Hence, instead of making every task-specific model differentially private,
we propose and analyze a method to learn a model for each task such that each model is insensitive
to changes in any other task’s training set.

Joint differential privacy. Differential privacy has been widely studied to provide certifiable guar-
antee for privacy in algorithms (Dwork & Roth, 2014; Dwork et al., |2010). In practice, differential
privacy could be achieved by noise perturbation methods like Laplace mechanism, Gaussian mech-
anism, etc (Dwork & Roth, [2014)). However, multi-task settings are not directly compatible with the
standard formulation of differential privacy. Our work aims to remedy this by providing meaningful
privacy formulations using joint differential privacy (JDP) (Kearns et al., 2014).

3 DPMTL: DIFFERENTIALLY PRIVATE MULTI-TASK LEARNING

In this section, we first formalize our multi-task learning objective, which is a form of mean-
regularized multi-task learning (Section [3.I). We then present DPMTL, a method for performing
differentially-private MTL (Section [3.2). We provide both a privacy guarantee (Section [3.3) and
utility guarantee (Section [3.4) for our approach.

3.1 PROBLEM SETUP

In the classical setting of multi-task relationship learning (Zhang & Yang| [2017; [Zhang & Yeung,
2010), there are m different task learners with their own task-specific data. The aim is to solve:

%}g{F(Wﬂ)z {ZZlk(wg:ﬁi,yi)—FR(W,Q)}}, 1)

k=11i=1

where wy, is the parametrization for the model of task learner k; W = [wy;- -+ ;w,y,]; and €
R™*™ characterizes the relationship between every pair of task learners. In this paper, we focus on
studying the mean-regularized multi-task learning objective (Evgeniou & Pontil, 2004): a special
case of (1) where Q@ = (Inyxm — %1,11131)2. Here I, «m is the identity matrix of size m x m and
1, € R™ is the vector with all entries equal to 1. In this case we set R to be

R(W, Q) = Mtr(WQWT) + X[ W %.
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Algorithm 1 DP Mean-Regularized MTL
1: Input: m, T, A, ng, m, {w®, -+, wd }, a® = L3 w)
2: fort=0,---,T—1do
3:  Global Learner broadcasts the mean weight @*

4: fork=1,---,min parallel do
5: Each task updates its weight wy, for some FE iterations
Wi = T(wf, — (Vo l(wh) + Mwh — @)

6: Each task sends w?l back to the global learner.
7:  end for
8:  Global Learner computes a noisy aggregator of the weights

_ 1 «

Wttt = E ; wZ’H + N(07 O'QIdXd)
9: end for

10: for £ =1,--- ,m in parallel do

11:  Each task assigns wy = w} and runs local finetuning for some iterations
wi = wi — M (Vo b (wi) + Mwg —@"))

12: end for

13: return wy,--- ,w,, as differentially private personalized models

Choosing \; = % and Ao = 0, we can rewrite the objective as:

, A 2 NS T
min {F(W) = {Zka—wH +Zlk(wk$i»yi) , (2)
k=1 i=1
where w is the average of task-specific models: w = %n 2211 wy. Note that w is shared across all

tasks, and each wy, is kept locally for task learner k. During optimization, each task learner k solves:

. A _ -
Iﬁlkn{f’f(wk9w) = §||w;~C —w||2+Zlk(wkai,yi)}. (3)

i=1

Despite the prevalence of this simple form of multi-task learning and its recent use in applications
such as federated learning with strong privacy motivations (e.g.,[Hanzely & Richtarik,|[2020; Hanzely
et al.,|2020; |Dinh et al.| 2020), we are unaware of prior work that has formalized differential privacy
in the context of solving this objective.

3.2 ALGORITHM

In this section we provide our DPMTL algorithm. Our optimization method consists of two steps: (i)
each task learner solves its own local objective inexactly and sends the updated model to the global
learner; (ii) the global learner adds random Gaussian noise after aggregating the local updates and
broadcasts the aggregated mean. The major difference between our solver and a non-private solver
for MTL is the noise added to the aggregation rule. We assume that we have a trusted global learner,
i.e., it is safe for the global learner to learn about task-specific data. However, since the global
model is a linear combination of all task specific models and is shared among all task learners, any
single task learner could infer information about other tasks from the global model. For example,
in the scenario where there are only two task learners whose models are parametrized by w; and
wy respectively, task learner one could simply retrieve wy by subtracting %wl from w for every
communication round. To overcome this privacy risk, we propose applying the Gaussian Mecha-
nism (Dwork & Roth, [2014) during global aggregation. In this case, each task learner receives a
noisy aggregated global model, making it hard for any task to leak private information to the other
tasks. On the other hand, in order to bound the /»-sensitivity of the task training process, we require
that the task model being communicated lies in B = {w|||w|| < B}. Hence, we use Projected Gra-
dient Descent (Bubeck, 2014) for local updates. We formalize the privacy guarantee of Algorithm E]
in Section[3.3
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3.3 PRIVACY ANALYSIS

In this section, we rigorously explore the privacy guarantee Algorithm |I| provides. As mentioned
previously, since the output of MTL is a collection of models, we use the notion of Joint Differential
Privacy (JDP) (Kearns et al.l 2014) to study the privacy guarantee of Algorithm[I] JDP requires that
for each task k, the set of output predictive models for all other tasks except & is insensitive to k’s
private data. Here, we provide a formal definition of JDP:

Definition 1 (Joint Differential Privacy (JDP)). (Kearns et al.l|2014) An algorithm M : U™ — R™
is (e, 6)-joint differentially private if for every i, for every pair of neighboring datasets that only
differ in index i: D, D’ € U™ and for every set of subsets of outputs S C R™,

Pr(M(D)_; € S) < ePr(M(D")_; € S) + 6, 4)
where M(D)_; represents the vector M(D) with the i-th entry removed.

JDP allows the predictive model for task k to depend on the private data of k, while still providing
a strong guarantee: even if all the users from all the other tasks collude and share their information,
they still will not be able to learn much about the private data in the task k.

In our optimization scheme, for each task k, at the end of each communication round, a shared model
is received, then the task specific model is updated. We formalize this local task learning process as
hy : Dp x W — W. Here we simply assume ¥V C R?. Define the mechanism for communication

round ¢ to be
m

MID} T (i) ho) = D (D @) + o ®

where a! ~ N(0,0214x4). Hence, the whole joint optimization process described in line 2-9 of
Algorithm|[1]could be characterized by M7 ({D;}, @w", {h;(-)}, o).

Theorem 1. The mechanism MY is (a,2a ZtT:l(maxj Agh%)?/(mo)?)-Rényi Differentially
Private.

We provide a detailed proof of Theorem|[I]in Appendix[A.T] Theorem|[I]provides a provable privacy
guarantee on the learned global model. In the next step of the training process, each task &k optimizes
its local objective given the private global model. We formally define this process as b}, : Dy x W —
W. Note that this is not exactly the same as hj, because the number of iterations to perform a local
update could differ between the two processes. We now present our main theorem of the JDP
guarantee provided by Algorithm

Theorem 2. Foranye > 0and(0 < 6 < 1, let o = 108(1/0) ypg 5 = SEVT108(1/0) ”Teizg(l/é). Algorithm

€

that outputs h}, (Dy,, MYT) for each task is (¢, §)-joint differentially private.

From Theorem [2] we can see that for any fixed d, the more tasks involved in the learning process,
the smaller ¢ we need in order to keep the privacy parameter ¢ the same. In other words, less noise
is required for the global model to keep the task specific data private. When we have infinitely many
tasks (m — o0), we have ¢ — 0, in which case the global model only needs to add negligible
amount of noise to make itself private to all tasks. We provide a detailed proof in Appendix

3.4 CONVERGENCE ANALYSIS

As discussed in Section[3.1] we are interested in the following task-specific objective:

- A -
Jr(wy; w) :lk(wk)+§||wk—w\|§, (6)

- -1
where W = w + o, where a ~ N'(0,0%Laxa), W = = Y7 w;.
Here, we analyze the convergence behavior in the setting where every task participates in the opti-
mization process at every communication round. Further, we assume the number of local optimiza-
tion steps 2 = 1. We present the following convergence result:
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Theorem 3 (Convergence under convex loss). Let fi, be both convex and (L + \)-smooth. Further
let ff = min,, g fi(w;w). If we use a fixed learning rate n, = n = %H we have

) - ) < AR A Bp
where
I = O((B + Vdo)?). (8)
Denote C = 3(L + \)||w) — wi||?> + fr(wd; w°) — fi. Let v and o chosen as we set in Theorem
Take T' = W;ﬁg—i;"w, the right hand side is bounded by
Elfu(wfsa") - ;] < DEVOMREU) 4 o p2) ©)

By Theorem given fixed €, 02 grows linearly with respect to 7. Hence, there exists an optimal T
that minimizes the upper bound in Equation[7] as shown in Equation[0] Note that the upper bound
consists of (’)(i), which means when there are more tasks, the upper bound becomes smaller
while the privacy parameter stays the same. On the other hand, Theorem [3| also shows a privacy-
utility tradeoff using our Algorithm I} the upper bound grows inversely proportional to the privacy
parameter e.

4 CONCLUSION AND FUTURE WORK

We propose a simple method for differentially private mean-regularized multi-task learning. Theo-
retically, we provide both privacy and utility guarantees for our approach. In future work, we plan
to further explore the privacy-utility tradeoff of our objective empirically, and analyze/evaluate the
performance of our method on non-convex objectives. We are also interested in extending our results
to more general forms of MTL, e.g., the family of objectives in (I)) with arbitrary matrix €.
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A APPENDIX

A.1 PRIVACY ANALYSIS: PROOF FOR THEOREM [I]AND 2]

Definition 2 (¢y-sensitivity). Let f : U — R? be some arbitrary function, the lo-sensitivity of f is
defined as

Aof=  max _ |f(D)—f(D)l2 (10)

adjacent D, D’ €U
Definition 3 (Rényi Divergence). (Mironov, [2017) Let P, Q be two probability distribution over

the same probability space, and let p,q be the respective probability density function. The Rényi
Divergence with finite order o # 1 is:

Du(PIQ) = i [ o) (28 an

oa—1 q(x)

Definition 4 ((«, ¢)-Rényi Differential Privacy). (Mironov, 2017) A randomized mechanism f :
D — R is said to have (., €)-Rényi Differential Privacy if for all adjacent D, D' € D it holds that:

Do (f(D)|If(D)) <. (12)

Lemma 1. (Mironov,[2017) The Gaussian mechanism is (o, o(2(Aa f)?/0?))-Renyi Differentially
Private.

Proof for Theorem 1. Define H : T]", D; x W — W as
B RS _
H'({D;}, @) = EzhE(Di,wt)- (13)

By Lemma 1, M***1is (o, 2a(Ay H)? /do?)-Renyi Differentially Private. Note that

2 _ t ~¢ t ~t\]|2
(AQH ) = mjaxadjacemrg?,XD;E'Dj ||H ({Dlv o 7-Dj7 T va}vw ) - H ({Dh o 7D;'7 T va}vw )H
(14)
= max max ih?(D4 w') — lht-(D’- w') i (15)
J  adjacent D;,D%€D; || M AN m 27
1 t ~¢ timy oty |2
- ijaxadjacemr%??géel)j ||hj(Dj7w ) - hj(Dj’w )H (16)
1
= Wm]ax(Ath)? (17)

Hence, by sequential composition of Rényi Differential Privacy, M7 s
(a, EiT:1 2cvmax; (Aght)? /m?c?)-RDP. 0

Lemma 2. (Mironov 2017) If f is (v, €)-RDP, then it is (¢ + 22 §)-DP for all § > 0.

a—1

Lemma 3. (Hsu et al.| 2016) Suppose M : U™ — R is (¢,0)-DP. Consider any set of functions:
fi iU x R — R'. Then the mechanism M’ that outputs f;(D;, M(D)) for each each i satisfies
(¢,6)-JDP,

Proof for Theorem 2. From Theorem [, Lemma [2] and Lemma [3] we know that Algorithm [1] is
(X1, 2amax; (Aght)? /m2a? 4 128000 5) pP.

a—
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Alog(1/0) , _ 80y/TTo8(1/3)

Plugin o = e , we have
log(1/6 log(1/4
Z 2c max(Aght) /m2a? + og( /1 ) < Z 204B% /m?*o? + o8 /1 ) (18)
=1 N
_ gil=l/dpe L log(1/9) (19)
2 (38YTles(/9) VT, o AlsU/D g
€ €
<5%3 (20)
—¢ 2D
Hence, Algorithm I]is (e, §)-JDP. O

A.2 CONVERGENCE ANALYSIS: PROOF FOR THEOREM [3]

Lemma 4. (Bubeck 2014) Let f be a convex and L-smooth function on X. Let v,y € X, x+ =
Iy (z — +Vf(z)), and gx(x) = L(x — «). Then the following holds true:

@) = fy) < ga(@)T(z —y) - —ng( )% (22)

Proof for Theorem 3. Let w}, = argmin,, fi(w;w*). From Lemma |4} let the learning rate be a

constant 7, = 1) = 5, we know
Elfx(wia") — fio(wj; @) < —mH(L + M) (wf, — w2 (23)

and

Elfu(wy, @) — fr(wi; @) < E[fi (w5 @) — fi(wis @)] + Elfi(wi; @) — fi(wi; o))

(24)
<@+ N (i = w ) llwg, — will + E[f(wi; @) = fulwg; w7)] -
A
(25)
Note that
A . *
A=E|Z[lwi —a'|* - IIw —w IIQ] (26)
)‘ ~ — % * ~ — %
= SEl@" — " |||l2wf — @ — @] 27)
= w (@ — @ [2y/E[l (2 — @) + 2(w} — )| 28)
< 2 VEl@ — o] \/E — 0'|?] + 4E[||wy — @*|]?] + 4[| 0* — @*||[|w — @]
(29)
>\ o T T o * T T -5 * Tk
< 5 VE[jwt —a*|]?] \/E[Ilw* — 0|P] + 4E[[[wy; — @ |]?] + 4\/E[I|w* — W' |PJE[|wi — @*[|?]
(30)
< g(QB+\/&a)(2B+\/&a+4B). (31)
Denote the right hand side as ;. Hence, we have
- ~ — ~ 1
Elfu(wy, @™ = fi(wi; @] < Elfi (w0 — fuwi™a")] - TN (L + A)(
B
(32)

w1
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and
E[fi (wit @) = fi(wi; @%)] < (L 4+ A)(wf, — wi™)[[lwh, — will + B[ f (wi™; @) a}é};( with @t + 7
It suffices to bound B:
_ i t+1_~t+12_é t+1 _ ~t)|2
B=E | fuwy™ =@ " = Sllw™ — 2 (34)
A
= SE[l@" — @ [2wi " — @' — @] (35)
A —
< SRl — @ PE]2u - @ — @+ (36)
— é ~to_ ot+1](2 tl ot t+1 41|12
=5 VE[lw 121/ E[[|(w w') 4+ 2(w" — w2 (37)
< S VE[[|wt — witt|? \/]E [+t — @t||2] + 4B[|lwi " — @t +1][2] + 4E[[| @t — @t|||lwi ™ — @t|]
(38)
A = — ~ ~ ~ — — —
<3 Ef|a" —a'*! |I2}J Ef|@t+t — @t||?] + 4 E[[lw; ™ — @"H?] +4\/E[Hwt+1 — @ 2E[Jwitt — @t |?]
C1 C2

(39)

where the first and third inequality follows from Cauchy-Schwartz Inequality: E[XY] <
E[XZ2]E[Y2]. It suffices to find the upper bound of C; and Cs.

=E[|(@" —a"™") — (o = a7 (40)
< E[|(@" — @ )|P) + Efa’ — o™ ?) + 2V/E[|[(0" — @ )[PE[|at — atF[2] @)
= E[||(@" — @ Y)|’] +2do” + 2/E[|| (@ — @*+1)[|?]2d0> 42)
1 m 2 1 m 2
=E||l= b gttt 2 il t b+l
leZ(u}k w || + 2do? + 2V2do | E HmZ(wk witt) 1 (43)
k=1 k=1
m 1 m
< = E t-‘rl 2do? -+ 24/2 - E t o t+12 44
Z [k = wf %) + 2do® + WdoJ o 2 Ellwt — w 44
< 4B? + 2do? + 2v/2do(2B) (45)
= (2B + V2do)?. (46)
On the other hand,
Cy = E[|Jw}, — @' + a|?] 47)
< Ef|lwy, — @"[I] + Ella]|*] + 2E[[Jwy, — @*||[|ee]] (48)
< Eflwy, — @"[1] + E[fla]|*] +2\/E (llwy, — @*IPTE[|cc]|?] (49)
< (2B)* + do? + 2V4B2do? (50)
= (2B + Vdo)?. (5D
Plug the bounds for C; and C; into B:
B < %(2B+\/ﬁa)(23+\/ﬁa+2(23+x/éa)). (52)
Denote the right hand side as 72, we have
1
t+1 @ttt — btV < o o 1N |2
B0 — fulws#)] < 5 — gy I+ Nk —uf P 69
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and
Elfe(wit ') = frlwh; @) < (L + M) (wh, — wi[llwg, —will +72+7. (54)

Let §; = E[fx(wk; w') — fi(wy; w*)], we have

1
041 < 6+ 72 — mH(L + A)(wy, — w12 (35)
1 1
< - — 71 —72)2.
<o+ 2L N [l — wZH2(5t+1 7= 2) (56)

From the update rule of PGD, we know that

" 1 «
[wi !t —wil? = [Jwf, - m((L + ) (wit! —wp)) — wil? (57)
" 2 . 1
< Jwp, — wi|l* — m(@ + )‘)(wtfl —wi) " (wf, — wy) + m((L + A)(wzt;l —w}))?
(58)
< wp, = wi||? (59)
< wy — wi]|?. (60)

Hence, we have:

1 1
S1 =M — 72 < (6 =7 —72) — 5L+ N Jwl — w2 (6141 — 71 — 72)° + 72 (61)
kT Wk

It can be shown by induction that

3(L+ N wp — will? + frlw; ') — fr(wi; %)

0 —v1— 72 < ;

+ V2. (62)
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