
ICLR 2021 - Workshop on Distributed and Private Machine Learning (DPML)

A GRAPHICAL MODEL PERSPECTIVE ON FEDERATED
LEARNING

Christos Louizos, Matthias Reisser, Joseph Soriaga, Max Welling
Qualcomm AI Research ∗
{clouizos,mreisser,jsoriaga,mwelling}@qti.qualcomm.com

ABSTRACT

Federated learning describes the distributed training of models across multiple
clients while keeping the data private on-device. In this work, we formalize the
server-orchestrated federated learning process as a hierarchical latent variable
model where the server provides the parameters of a prior distribution over the
client-specific model parameters. We then show that with simple Gaussian priors
and a hard version of the well known Expectation-Maximization (EM) algorithm,
learning in such a model corresponds to FedAvg, the most popular algorithm
for this federated learning setting. This perspective on federated learning unifies
several recent works in the field and opens up the possibility for extensions through
different choices in the hierarchical model. Based on this view, we further propose
a variant of the hierarchical model that employs prior distributions to promote
sparsity. By using the hard-EM algorithm for learning, we obtain FedSparse, a
procedure that can learn sparse neural networks in the federated learning setting.
FedSparse reduces communication costs from client to server and vice-versa,
as well as the computational costs for inference with the sparsified network – both
of which are of great practical importance in federated learning.

1 INTRODUCTION

In this work we provide a novel perspective on server-orchestrated federated learning through the
lens of a simple hierarchical latent variable model; the server provides the parameters of a prior
distribution over the client specific neural network parameters which are used to “explain” the client
specific dataset. A visualization of this graphical model can be seen at Figure 1. We show that when
the server provides a Gaussian prior, learning with the hard version of the Expectation-Maximization
(EM) algorithm will yield the FedAvg procedure. This novel view of FedAvg has several interesting
consequences, as it connects several recent works in federated learning, bridges FedAvg with meta-
learning and provides a good basis for extending the FedAvg algorithm. Through this perspective,
we develop FedSparse by extending the graphical model to the one in Figure 2. FedSparse
allows for learning sparse neural network models at the client and server via a careful choice of the
priors within the hierarchical model. In this way, it provides models that simultaneously reduce the
communication costs and computational requirements at the client devices, an aspect that is important
for the “cross-device” setting (Kairouz et al., 2019) of federated learning.

2 A HIERARCHICAL MODEL INTERPRETATION OF FEDERATED LEARNING

The server-orchestrated variant of federated learning is mainly realized via the FedAvg (McMahan
et al., 2016) algorithm, which is a simple iterative procedure consisting of four steps. At the beginning
of each round t, the server communicates the model parameters, let them be w, to a subset of the
devices. The devices then proceed to optimize w, e.g., via stochastic gradient descent, on their
respective dataset via a given loss function Ls(Ds,w) := 1

Ns

∑Ns

i=1 L(Dsi,w) where s indexes the
device, Ds corresponds to the dataset at device s and Ns corresponds to its size. After a specific
amount of epochs of optimization on Ls is performed, the devices communicate the current state of

∗Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc. and/or its subsidiaries.

1

ICLR 2021 - Workshop on Distributed and Private Machine Learning (DPML)

Dsφs

w

S shards

server

Figure 1: The simple hierarchical model
for server-orchestrated federated learn-
ing. With a Gaussian prior for the local
parameters φs centered at the server pa-
rameters w and hard-EM for learning we
obtain FedAvg.

Dsφs

w

zs

θ

S shards

server

Figure 2: Modifying the hierarchical model to allow
for sparsity in the local parameters φs with the spike
and slab distribution. The server parameter θ governs a
Bernoulli prior distribution over the local variables zs,
which determine whether a parameter in φs is active or
not. When a parameter is active, the prior is a Gaussian
centered at the server parameters w. By using hard-EM
on this hierarchical model, we obtain FedSparse.

their parameters, let it be φs, to the server. The server then performs an update to its own model by
simply averaging the client specific parameters wt =

1
S

∑
s φs.

2.1 FEDAVG AS LEARNING IN A HIERARCHICAL MODEL

Let us consider a likelihood per shard specific dataset Ds, p(Ds|φs), where φs are the parameters of
the local model, and consider a prior over these parameters, p(φs|w) ∝ exp(−λ2 ‖φs −w‖2), where
w are the parameters of the prior and those are given by the server. This will yield an objective for
the server parameters w of the form

F(w) :=
∑
s

log p(Ds|w) =
∑
s

log

∫
p(Ds|φs)

exp
(
−λ2 ‖φs −w‖2

)
Z

dφs, (1)

and corresponds to the graphical model seen at Figure 1. The traditional way to optimize such
objectives is through Expectation-Maximization (EM). EM consists of two steps, the E-step where
we form the posterior distribution over these latent variables p(φs|Ds,w) = p(Ds|φs)p(φs|w)

p(Ds|w) , and
the M-step where we maximize the probability of all Ds with respect to the parameters of the model
w by marginalizing over this posterior

argmax
w

∑
s

Ep(φs|Ds,wold)[log p(Ds,φs|w)] = argmax
w

∑
s

Ep(φs|Ds,wold)[log p(φs|w)]. (2)

If we perform a single gradient step for w in the M-step, this procedure corresponds to doing gradient
ascent on the original objective at Eq. 1, a fact we show in Appendix D. When posterior inference
is intractable, hard-EM is usually employed as a simpler alternative. In this case we make “hard”
assignment for the latent variables φs in the E-step by approximating p(φs|Ds,w) with its most
probable point, i.e. φ∗s = argmaxφs

log p(Ds|φs) + log p(φs|w). This is usually easier to do as we
can use techniques such as stochastic gradient ascent. Given these hard assignments, the M-step then
corresponds to another simple maximization argmaxw

1
S

∑
s log p(φ

∗
s|w). As a result, performing

hard-EM on the objective of Eq. 1 corresponds to a block coordinate ascent type of algorithm on the
following objective function

argmax
φ1:S ,w

∑
s

log p(Ds|φs) + log p(φs|w), (3)

where we alternate between optimizing φ1:S and w while keeping the other fixed. How does this
learning procedure correspond to FedAvg? By letting λ → 0 in Eq. 1 it is clear that the hard
assignments in the E-step mimic the process of optimizing a local model on the data of each shard.
In fact, even by optimizing the model locally with stochastic gradient ascent for a fixed number of
iterations with a given learning rate we implicitly assume a specific prior over the parameters (Grant
et al., 2018). After obtaining φ∗s the M-step then corresponds to maximizing

∑
s−

λ
2 ‖φ

∗
s −w‖2 +C

2

ICLR 2021 - Workshop on Distributed and Private Machine Learning (DPML)

w.r.t. w and we can easily find a closed form solution by setting the derivative of the objective w.r.t.
w to zero and solving for w:

∂(
∑
s−

λ
2 ‖φ

∗
s −w‖2 + C)

∂w
= 0⇒ λ

∑
s

(φ∗s −w) = 0⇒ w =
1

S

∑
s

φ∗s. (4)

It is easy to see that the optimal solution for w given φ∗1:S is the same as the one from FedAvg. Of
course, FedAvg does not optimize the local parameters φs to convergence at each round, so one
might wonder whether this correspondence is still valid. It turns out that the alternating procedure
of EM corresponds to block coordinate ascent on a single objective function, the variational lower
bound of the marginal log-likelihood (Neal & Hinton, 1998) of a given model. More specifically for
our setting, we can see that the EM iterations perform block coordinate ascent on:∑

s

Eqws (φs)

[
log p(Ds|φs) + log p(φs|w)] +H[qws

(φs)] (5)

to optimize w1:S and w, where ws are the parameters of the variational approximation to the posterior
distribution p(φs|Ds,w) and H[q] corresponds to the entropy of the q distribution. To obtain the
hard-EM procedure, and thus FedAvg, we can use a (numerically) deterministic distribution for
φs, qws(φs) := N (ws, εI). This leads us to the same objective as in Eq. 3, since the expectation
concentrates on a single term and the entropy of qws(φs) becomes a constant independent of the
optimization. In this case, the optimized value for φs after a fixed number of steps corresponds to the
ws of the variational approximation.

It is interesting to contrast recent literature under the lens of this hierarchical model interpretation.
Optimizing the same model with hard-EM but with a non-trivial λ results into the same procedure
that was proposed by Li et al. (2018). Furthermore, using the difference of the local parameters
to the global parameters as a “gradient” (Reddi et al., 2020) is equivalent to hard-EM on the same
model where in the M-step, instead of a closed form update, we take a single gradient step and absorb
the scaling λ in the learning rate. In addition, this view makes precise the idea that FedAvg is a
meta-learning algorithm (Jiang et al., 2019); the underlying hierarchical model it optimizes is similar
to the ones used in meta-learning (Grant et al., 2018; Chen et al., 2019). Besides connecting recent
work in FL, this novel view also serves as a good basis for new algorithms for federated learning by
changing the prior in the hierarchical model. In this work we focus on tackling the communication
and computational costs of FL, which is important and highly beneficial for practical applications
of “cross-device” FL (Kairouz et al., 2019). For this reason, we replace the Gaussian prior with a
sparsity inducing prior, namely the spike and slab (Mitchell & Beauchamp, 1988). We describe the
resulting algorithm, FedSparse, in the next section. Details for alternative priors can be found at
appendix G.

2.2 THE FEDSPARSE ALGORITHM: SPARSITY IN FEDERATED LEARNING

Encouraging sparsity in FL has two main advantages; the model becomes smaller and therefore less
resource intensive to evaluate. Furthermore, it cuts down on communication costs as the pruned
parameters do not need to be communicated. The golden standard for sparsity in probabilistic models
is the spike and slab prior, which is a mixture of two components, a delta spike at zero, δ(0), and a
continuous distribution over the real line, i.e. the slab. More specifically, by adopting a Gaussian slab
for each local parameter φsi we have that

p(zsi) = Bern(θi), p(φsi|zsi = 1,wi) = N (φsi|wi, 1/λ), p(φsi|zsi = 0) = δ(0) (6)

p(φsi|θi,wi) =
∑
zsi

p(zsi|θi)p(φsi|zsi,wi), (7)

where zsi plays the role of a “gating” variable that switches the parameter φsi on or off. We now
modify the hierarchical model at Figure 1 to use this new prior. The resulting hierarchical model
can be seen at Figure 2, where w, θ will be the server side model weights and probabilities of the
binary gates. In order to stay close to the FedAvg paradigm of simple point estimation, we will use
hard-EM in order to optimize w,θ. By using approximate distributions qws

(φs|zs), qπs
(zs), the

variational lower bound for this model becomes∑
s

Eqπs (zs)qws (φs|zs)

[
log p(Ds|φs) + log p(φs|w, zs)+

+ log p(zs|θ)− log qws(φs|zs)
]
+H[qπs(zs)], (8)

3

ICLR 2021 - Workshop on Distributed and Private Machine Learning (DPML)

which is to be optimized with respect to w1:S ,w,π1:S ,θ. For the shard specific weight distributions,
as they are continuous, we will use qws

(φsi|zsi = 1) := N (wsi, ε), q(φsi|zsi = 1) := N (0, ε) with
ε ≈ 0 which will be, numerically speaking, deterministic. For the gating variables, as they are binary,
we will use qπsi

(zsi) := Bern(πsi) with πsi being the probability of activating local gate zsi. In
order to do hard-EM for the binary variables, we will remove the entropy term for the qπs

(zs) from
the aforementioned bound as this will encourage the approximate distribution to move towards the
most probable value for zs. After some further simplifications, we arrive at the final objective∑

s

Ls(Ds,w,θ,ws,πs) :=
∑
s

Eqπs (zs)

[
Ns∑
i

L(Dsi,ws � zs)

]
− λ

2

∑
j

πsj(wsj −wj)
2

− λ0
∑
j

πsj +
∑
j

(πsj log θj + (1− πsj) log(1− θj)) . (9)

The derivation can be found at Appendix E. It is interesting to see that the final objective at each shard
intuitively tries to find a trade-off between four things: 1) explaining the local dataset Ds, 2) having
the local weights close to the server weights (regulated by λ), 3) having the local gate probabilities
close to the server probabilities and 4) reducing the local gate activation probabilities so as to prune
away a parameter (regulated by λ0). The latter is an L0 regularization term, akin to the one proposed
by Louizos et al. (2017). Now let us consider what happens at the server after the local shard, through
some procedure, optimized ws and πs. Since the server loss for w,θ is the sum of all local losses,
the gradient and stationary points for each of the parameters will be

∂L
∂w

=
∑
s

λπs(ws −w), w =
1∑
j πj

∑
s

πsws (10)

∂L
∂θ

=
∑
s

(
πs
θ
− 1− πs

1− θ

)
, θ =

1

S

∑
s

πs, (11)

i.e., the stationary points are a weighted average of the local weights and an average of the local
probabilities of keeping these weights. Therefore, since the πs are being optimized to be sparse
through the L0 penalty, the server probabilities θ will also become small for the weights that are used
by only a small fraction of the shards. As a result, to obtain the final sparse architecture, we can prune
the weights whose corresponding server inclusion probabilities θ are less than a threshold, e.g. 0.1. It
should be mentioned that the server needs to communicate to the clients the updated distributions at
each round. Unfortunately, for simple unstructured pruning, this doubles the communication cost as
for each weight wi there is an associated θi that needs to be sent to the client. To mitigate this effect
we will employ structured pruning, which introduces a single additional parameter for each group of
weights. For groups of moderate sizes, e.g., the set of weights of a given convolutional filter, the extra
overhead is small. In the appendix, we provide further practical details for FedSparse along with
how it can lead to reductions in communication costs.

3 EXPERIMENTS

Figure 3: Femnist results.

To evaluate FedSparse we considered the non-i.i.d. Femnist
classification with a LeNet-5 convolutional architecture (LeCun
et al., 1998) which was optimized for 6k rounds. As a base-
line that also reduces communication costs by sparsifying the
model, we consider the federated dropout procedure from Cal-
das et al. (2018), which we refer to as FedDrop. We present
the results for FedSparse with regularization strengths that
target three sparsity levels: low, mid and high. The results can
be seen at Fig. 3, where the x-axis corresponds to the total GB
communicated and the y-axis to the server model accuracy on
the union of the shard specific test sets. More details along with
additional results on other datasets can be found at Appendix C.
We see that FedSparse reaches comparable accuracy to FedDrop and FedAvg while requiring
in general less communication. More specifically, in the high sparsification setting, it can reach
∼84% accuracy while requiring ∼41% less communication compared to FedAvg. We can also see
that the sparsity in the model depends on the regularization strength, and it can reach up to ∼60%.
The figures can be found in the appendix.

4

ICLR 2021 - Workshop on Distributed and Private Machine Learning (DPML)

REFERENCES

Mohammad Mohammadi Amiri, Deniz Gunduz, Sanjeev R Kulkarni, and H Vincent Poor. Federated
learning with quantized global model updates. arXiv preprint arXiv:2006.10672, 2020.

Kambiz Azarian, Yash Bhalgat, Jinwon Lee, and Tijmen Blankevoort. Learned threshold pruning.
arXiv preprint arXiv:2003.00075, 2020.

Sebastian Caldas, Jakub Konečny, H Brendan McMahan, and Ameet Talwalkar. Expanding the reach
of federated learning by reducing client resource requirements. arXiv preprint arXiv:1812.07210,
2018.

Yutian Chen, Abram L Friesen, Feryal Behbahani, David Budden, Matthew W Hoffman, Ar-
naud Doucet, and Nando de Freitas. Modular meta-learning with shrinkage. arXiv preprint
arXiv:1909.05557, 2019.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. Recasting gradient-
based meta-learning as hierarchical bayes. arXiv preprint arXiv:1801.08930, 2018.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Yihan Jiang, Jakub Konečnỳ, Keith Rush, and Sreeram Kannan. Improving federated learning
personalization via model agnostic meta learning. arXiv preprint arXiv:1909.12488, 2019.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances
and open problems in federated learning. arXiv preprint arXiv:1912.04977, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127, 2018.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient compression:
Reducing the communication bandwidth for distributed training. arXiv preprint arXiv:1712.01887,
2017.

Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through
l_0 regularization. arXiv preprint arXiv:1712.01312, 2017.

H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al. Communication-efficient
learning of deep networks from decentralized data. arXiv preprint arXiv:1602.05629, 2016.

Toby J Mitchell and John J Beauchamp. Bayesian variable selection in linear regression. Journal of
the american statistical association, 83(404):1023–1032, 1988.

Radford M Neal and Geoffrey E Hinton. A view of the em algorithm that justifies incremental, sparse,
and other variants. In Learning in graphical models, pp. 355–368. Springer, 1998.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

5

ICLR 2021 - Workshop on Distributed and Private Machine Learning (DPML)

APPENDIX

A REDUCING THE COMMUNICATION COST

The framework described in the main text allow us to learn a more efficient model. We now discuss
how we can use it in order to cut down both download and upload communication costs during
training.

Reducing client to server communication cost In order to reduce the client to server cost we will
communicate sparse samples from the local distributions instead of the distributions themselves; in
this way we do not have to communicate the zero values of the parameter vector which leads to large
savings. More specifically, we can express the gradients and stationary points for the server weights
and probabilities as follows

∂L
∂w

=
∑
s

λEqπs (zs) [zs(ws −w)] , (12)

w = Eqπ1:S
(z1:S)

[
1∑
j zj

∑
s

zsws

]
, (13)

∂L
∂θ

=
∑
s

Eqπs (zs)

[
zs
θ
− 1− zs

1− θ

]
, (14)

θ =
1

S

∑
s

Eqπs (zs) [zs] . (15)

As a result, we can then communicate from the client only the subset of the local weights ŵs that are
non-zero in zs ∼ qπs(zs), ŵs = ws � zs, along with the zs. Having access to those samples, the
server can then form 1-sample stochastic estimates of either the gradients or the stationary points
for w,θ. Notice that this is a way to reduce communication without adding bias in the gradients of
the original objective. In case that we are willing to incur extra bias, we can further use techniques
such as quantization (Amiri et al., 2020) and top-k gradient selection (Lin et al., 2017) to reduce
communication even further. Such approaches are left for future work.

Reducing the server to client communication cost The server needs to communicate to the clients
the updated distributions at each round. Unfortunately, for simple unstructured pruning, this doubles
the communication cost as for each weight wi there is an associated θi that needs to be sent to the
client. To mitigate this effect we will employ structured pruning, which introduces a single additional
parameter for each group of weights. For groups of moderate sizes, e.g., the set of weights of a given
convolutional filter, the extra overhead is small. We can also take the communication cost reductions
one step further if we allow for some bias in the optimization procedure; we can prune the global
model during training after every round and thus send to each of the clients only the subset of the
model that has survived. Notice that this is easy to do and does not require any data at the server. The
inclusion probabilities θ are available at the server, so we can remove the parameters that have θ less
than a threshold, e.g. 0.1. This can lead to large reductions in communication costs, especially once
the model becomes sufficiently sparse.

B FEDSPARSE IN PRACTICE

Local optimization While optimizing for ws locally is straightforward to do with gradient based
optimizers, πs is more tricky, as the expectation over the binary variables zs in Eq. 9 is intractable to
compute in closed form and using Monte-Carlo integration does not yield reparametrizable samples.
To circumvent these issues, we rewrite the objective in an equivalent form and use the hard-concrete
relaxation from (Louizos et al., 2017), which can allow for the straightforward application of gradient
ascent. We provide the details in Appendix F. When the client has to communicate to the server,
we propose to form ŵs by sampling from the zero-temperature relaxation, which yields exact
binary samples. Furthermore, at the beginning of each round, following the practice of FedAvg,
the participating clients initialize their approximate posteriors to be equal to the priors that were

6

ICLR 2021 - Workshop on Distributed and Private Machine Learning (DPML)

Algorithm 1 The server side algorithm for FedSparse (assuming weight sparsity for simplicity).
σ(·) is the sigmoid function, ε is the threshold for pruning.

Initialize v and w
for round t in 1, . . . T do

τ ← log(1 + exp(v))
θ ← σ ((|w| − τ)/T)
w← I[θ > ε]w . prune global model
Initialize∇tw = 0,∇tv = 0
for s in random subset of the clients do

zs, ŵ
t
s ← CLIENT(s,w,v)

∇tw+ = zs(ŵ
t
s −w)

∇tv+ = − (zs(1− θ)− (1− zs)θ)σ(v)/T
end for
wt+1,vt+1 ← ADAM(∇tw), ADAMAX(∇tv)

end for

Algorithm 2 The client side algorithm for FedSparse.

Get w,v from the server
θ ← σ ((|w| − τ)/T)
ws,vs ← w,v
for epoch e in 1, . . . , E do

for batch b ∈ B do
τs ← log(1 + exp(vs))
πs ← σ ((|ws| − τs)/T)
Ls ← Ls(b,w,θ,ws,πs)
ws ← SGD(∇wsLs)
vs ← ADAMAX(∇vsLs)

end for
end for
πs ← σ ((|ws| − τs)/T)
zs ∼ qπs

(zs)
return zs, zs �ws

communicated from the server. Empirically, we found that this resulted in better global model
accuracy.

Parameterization of the probabilities There is evidence that such optimization based pruning can
be inferior to simple magnitude based pruning (Gale et al., 2019). We therefore take an approach
that combines the two and reminisces the recent work of Azarian et al. (2020). We parameterize the
probabilities θ,πs as a function of the model weights and magnitude based thresholds that regulate
how active a parameter can be. More specifically, we use the following parameterization

θg := σ

(
‖wg‖2 − τg

T

)
, πsg := σ

(
‖wsg‖2 − τsg

T

)
, (16)

where the subscript g denotes the group, σ(·) is the sigmoid function, τg, τsg are the global and client
specific thresholds for a given group g and T is a temperature hyperparameter. Following Azarian
et al. (2020) we also “detach” the gradient of the weights through θ,πs, to avoid decreasing the
probabilities by just shrinking the weights. With this parametrization we lose the ability to get a
closed form solution for the server thresholds, but nonetheless we can still perform gradient based
optimization at the server by using the chain rule. For a positive threshold, we use a parametrization
in terms of a softplus function, i.e., τ = log(1 + exp(v)) where v is the learnable parameter. The
FedSparse algorithm is described in Alg. 1, 2.

7

ICLR 2021 - Workshop on Distributed and Private Machine Learning (DPML)

C EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

Besides the experiment in the main text, we also performed additional experiments on federated
versions of CIFAR 10 and CIFAR 100. For the federated version of CIFAR10 classification we
partition the data among 100 shards in a non-i.i.d. way by following Hsu et al. (2019). For the
model we employ a LeNet-5 convolutional architecture (LeCun et al., 1998) with the addition of
dropout(0.1) for the second convolutional layer and dropout(0.3) for the first fully connected layer
in order to prevent overfitting locally at the shard. We optimize the model for 1k communication
rounds. For CIFAR 100 classification, we consider the 500 shard federated version from Reddi et al.
(2020). For the model we use a ResNet20, where we replace the batch normalization layers with
group normalization, following Reddi et al. (2020), and we optimize for 6k rounds.

During training we randomly select 10 clients without replacement in a given round but with
replacement across rounds. For the local optimizer of the weights we use stochastic gradient descent
with a learning rate of 0.05, whereas for the global optimizer we use Adam (Kingma & Ba, 2014)
with the default hyperparameters provided in (Kingma & Ba, 2014). For the pruning thresholds in
FedSparse we used the Adamax (Kingma & Ba, 2014) optimizer with 1e− 3 learning rate at the
shard level and the Adamax optimizer with 1e− 2 learning rate at the server. For all three of the tasks
we used E = 1 with a batch size of 64 for CIFAR10 and 20 for CIFAR100 and Femnist. It should be
noted that for all the methods we performed gradient based optimization using the difference gradient
for the weights (Reddi et al., 2020) instead of averaging.

For the FedDrop baseline, we used a very small dropout rate of 0.01 for the input and output
layer and tuned the dropout rates for convolutional and fully connected layers separately in order
to optimize the accuracy / communication tradeoff. For convolutional layers we considered rates in
{0.1, 0.2, 0.3} whereas for the fully connected layers we considered rates in {0.1, 0.2, 0.3, 0.4, 0.5}.
For CIFAR10 we did not employ the additional dropout noise at the shard level, since we found that
it was detrimental for the FedDrop performance. Furthermore, for Resnet20 on CIFAR100 we did
not apply federated dropout at the output layer. For CIFAR10 the best performing dropout rates were
0.1 for the convolutional and 0.5 for the fully connected, whereas for CIFAR100 it was 0.1 for the
convolutional. For Femnist, we saw that a rate of 0.2 for the convolutional and a rate of 0.4 for the
fully connected performed better.

For FedSparse, we initialized v such that the thresholds τ lead to θ = 0.99 initially, i.e. we started
from a dense model. The temperature for the sigmoid in the parameterization of the probabilities
was set to T = 0.001. Furthermore, we downscaled the cross-entropy term between the client side
probabilities, πs, and the server side probabilities, θ by mutltiplying it with 1e − 4. Since at the
beginning of each round we were always initializing πS = θ and we were only optimizing for a small
number of steps before synchronizing, we found that the full strength of the cross-entropy was not
necessary. Furthermore, for similar reasons, i.e. we set ws = w at the beginning of each round, we
also used λ = 0 for the drift term λ

2πsj(ws −w)2. The remaining hyperparameter λ0 dictates how
sparse the final model will be. For the LeNet-5 model the λ0’s we report are {5e− 7, 5e− 6, 5e− 5}
for the “low”, “mid” and “high” settings respectively, which were optimized for CIFAR10 and used
as-is for Femnist. For CIFAR100 and Resnet20, we did not perform any pruning for the output layer
and the λ0’s for the “low”, “mid” and “high” settings were {5e − 7, 5e − 6, 5e − 5} respectively.
These were chosen so that we obtain models with comparable sparsity ratios as the one on CIFAR10.

C.1 ADDITIONAL RESULTS

Besides evaluating FedSparse and the baselines on the server model accuracy as a function of
the communication costs, we also considered an additional metric which corresponds to the average
accuracy of the shard specific “local models” on the shard specific test sets. The “local model” on
each shard is the model configuration that the shard last communicated to the server, and serves as a
proxy for the personalized model performance on each shard. The later metric is motivated from the
meta-learning (Jiang et al., 2019) and hierarchical model view of federated learning, and corresponds
to using the local posteriors for prediction on the local test set instead of the server side priors. The
assumption we make here, is that each client has the same data generating mechanism for its training
and test sets, which is not an unrealistic assumption to make in practice.

8

ICLR 2021 - Workshop on Distributed and Private Machine Learning (DPML)

Accuracy vs. communication costs results on all datasets Here we show the table and figures
from the results on all three tasks, by considering either the server model performance or the local
models performance.

We can see that for CIFAR 10, the FedSparse models with medium (∼45%) and high (∼62%)
sparsity outperform all other methods for small communications budgets on the global accuracy
front, but are eventually surpassed by FedDrop on higher budgets. However, on the local accuracy
front, we see that the FedSparse models Pareto dominate both baselines, achieving, e.g., 87% local
accuracy with 43% less communication compared to FedAvg. Overall, judging the final performance
only, we see that FedDrop reaches the best accuracy on the global model, but FedSparse reaches
the best accuracy in the local models.

On CIFAR 100, the differences are less pronounced, as the models did not fully converge for the
maximum number of rounds we use. Nevertheless, we still observe similar patterns; for small
communication budgets, the sparser models are better for both the global and local accuracy as, e.g.,
they can reach 32% global accuracy while requiring 13% less communication than FedAvg.

Table 1: Average global, local test-set accuracies across clients in %, along with total communications
costs in GB and sparsity of the final model for Cifar10, Cifar100 and Femnist. We report the average
over the last 10 evaluations.

Method Cifar 10 Cifar 100 Femnist
G.Acc. L.Acc. Comm. Spars. G.Acc. L.Acc. Comm. Spars. G.Acc. L.Acc. Comm. Spars.

FedAvg 69.97 86.71 65 - 41.11 61.61 123 - 85.62 90.81 272 -
FedDrop 71.54 86.86 35 - 37.65 58.02 112 - 85.23 89.37 174 -

FedSparse, low 70.30 87.65 52 20.1 40.69 61.31 113 2.2 85.03 90.82 270 1.0
FedSparse, mid 70.30 87.54 36 45.7 31.94 54.83 59 51.0 84.83 90.61 145 47.0
FedSparse, high 68.46 87.17 26 62.4 24.68 49.58 45 62.9 84.13 89.68 95 65.5

(a) CIFAR 10 global acc. (b) CIFAR100 global acc. (c) Femnist global acc.

(a) CIFAR 10 local acc. (b) CIFAR100 local acc. (c) Femnist local acc.

Evolution of sparsity We show the evolution of the sparsity ratios for all tasks and configurations
in the following plot. We can see that in all settings the model attains its final sparsity quite early in
training.

Convergence plots in terms of communication rounds. In order to understand whether the extra
noise is detrimental to the convergence speed of FedSparse, we plot the validation accuracy in
terms of communication rounds for all tasks and baselines. As it can be seen, there is no inherent

9

ICLR 2021 - Workshop on Distributed and Private Machine Learning (DPML)

(a) CIFAR10 sparsity (b) CIFAR100 sparsity (c) Femnist sparsity

difference before FedSparse starts pruning. This happens quite early in training for CIFAR 100
thus it is there where we observe the most differences.

(a) CIFAR10 (b) CIFAR100 (c) Femnist

Figure 7: Evolution of the validation accuracy in terms of communication rounds.

Impact of server side pruning. In order to understand whether server side pruning is harmful for
convergence, we plot both the global and average local validation accuracy on CIFAR 10 for the
“mid” setting of FedSparse with and without server side pruning enabled. As we can see, there are
no noticeable differences and in fact, pruning results into a slightly better overall performance.

(a) CIFAR10 global val. acc. (b) CIFAR100 local val. acc.

Figure 8: Evolution of the validation accuracy in terms of communication rounds with and without
server side pruning.

D CORRESPONDENCE BETWEEN SINGLE STEP EM AND GRADIENT ASCENT

With the addition of the auxiliary variables φs we have that the overall objective for the server
becomes

argmax
w

1

S

S∑
s=1

log

∫
p(Ds|φs)p(φs|w)dφs. (17)

10

ICLR 2021 - Workshop on Distributed and Private Machine Learning (DPML)

By performing EM with a single gradient step for w in the M-step (instead of full maximization),
we are essentially doing gradient ascent on the original objective at 17. To see this, we can take the
gradient of Eq. 17 w.r.t. w where Zs =

∫
p(Ds|φs)p(φs|w)dφs

1

S

∑
s

1

Zs

∫
p(Ds|φs)

∂p(φs|w)

∂w
dφs = (18)

1

S

∑
s

∫
p(Ds|φs)p(φs|w)

Zs

∂ log p(φs|w)

∂w
dφs = (19)

1

S

∑
s

∫
p(φs|Ds,w)

∂ log p(φs|w)

∂w
dφs (20)

where to compute Eq. 20 we see that we first have to obtain the posterior distribution of the local
variables φs and then estimate the gradient for w by marginalizing over this posterior.

E DERIVATION OF THE LOCAL LOSS FOR FEDSPARSE

Let p(φsi|wi, zsi = 1) = N (wi, 1/λ), p(φsi|wi, zsi = 0) = N (0, 1/λ2) and q(φsi|zsi = 1) =
N (wsi, ε

2), q(φsi|zsi = 0) = N (0, ε2). Furthermore, let q(zsi) = Bern(πsi). The local objective
that stems from 8 can be rewritten as:

argmax
w1:S ,π1:S

Eqπs (zs)qws (φs|zs)

[
log p(Ds|φs)

]
− Eqπs (zs)

[
KL(qws

(φs|zs)||p(φs|w, zs))
]

+ Eqπs (zs)[log p(zs|θ)], (21)

where we omitted from the objective the entropy of the distribution over the local gates.

One of the quantities that we are after is

Eq(zsi)[KL(q(φsi|zsi)||p(φsi|zsi))] =
πsiKL(N (wsi, ε

2)||N (wi, 1/λ)) + (1− πsi)KL(N (0, ε2)||N (0, 1/λ2)). (22)

The KL term for when zsi = 1 can be written as

KL(N (wsi, ε
2)||N (wi, 1/λ)) = −

1

2
log λ− log ε+

λε2

2
− 1

2
+
λ

2
(wsi −wi)

2. (23)

The KL term for when zsi = 0 can be written as

KL(N (0, ε2)||N (0, 1/λ2)) = −
1

2
log λ2 − log ε+

λ2ε
2

2
− 1

2
. (24)

Taking everything together we thus have

Eq(zsi)[KL(q(φsi|zsi)||p(φsi|zsi))] =
λπsi
2

(wsi −wi)
2 + πsi(−

1

2
log λ− log ε+

λε2

2
− 1

2
)+

(1− πsi)(−
1

2
log λ2 − log ε+

λ2ε
2

2
− 1

2
) (25)

=
λπsi
2

(wsi −wi)
2 + πsi

(
1

2
log

λ2
λ

+
ε2

2
(λ− λ2)

)
+ C

(26)

≈ λπsi
2

(wsi −wi)
2 + λ0πsi + C, (27)

where λ0 = 1
2 log

λ2

λ and ε2

2 (λ− λ2) was omitted due to ε2 ≈ 0. In the appendix of Louizos et al.
(2017), the authors argue about a hypothetical prior that results into needing λ nats to transform
that prior to the approximate posterior. Here we make this claim more precise and show that this
prior is approximately equivalent to a mixture of Gaussians prior where the precision of the non-zero
prior component λ→ ε (in order to avoid the L2 regularization term) and the precision of the zeroth
component λ2 is equivalent to λ exp(2λ0), where λ0 is the desired L0 regularization strength.

11

ICLR 2021 - Workshop on Distributed and Private Machine Learning (DPML)

Furthermore, the cross-entropy from qπs
(zs) to p(zs|θ) is straightforward to compute as

Eqπs (zs)[log p(zs|θ)] =
∑
j

(πsj log θj + (1− πsj) log(1− θj)) . (28)

By putting everything together we have that the local objective becomes

argmax
ws,πs

Eqπs (zs)

[
Ns∑
i

L(Dsi,ws � zs)

]
− λ

2

∑
j

πsj(wsj −wj)
2 − λ0

∑
j

πsj

+
∑
j

(πsj log θj + (1− πsj) log(1− θj)) + C. (29)

F LOCAL OPTIMIZATION OF THE BINARY GATES

We propose to rewrite the local loss in Eq. 8 to

Ls(Ds,w,θ,φs,πs) := Eqπs (zs)

[Ns∑
i

L(Dsi,ws � zs)− λ
∑
j

I[zsj 6= 0](wsj −w)2

− λ0
∑
j

I[zsj 6= 0] +
∑
j

(
I[zsj 6= 0] log

θj
1− θj

+ log(1− θj)

)]
, (30)

and then replace the Bernoulli distribution qπs(zs) with a continuous relaxation, the hard-concrete
distribution (Louizos et al., 2017). Let the continuous relaxation be rus(zs), where us are the
parameters of the surrogate distribution. In this case the local objective becomes

Ls(Ds,w,θ,φs,us) := Erus (zs)

[Ns∑
i

L(Dsi,ws � zs)

]
− λ

∑
j

Rusj (zsj > 0)(wsj −w)2

− λ0
∑
j

Rusj
(zsj > 0) +

∑
j

(
Rusj

(zsj > 0) log
θj

1− θj
+ log(1− θj)

)
, (31)

where Rus(·) is the cumulative distribution function (CDF) of the continuous relaxation rus(·). We
can now straightforwardly optimize the surrogate objective with gradient ascent.

G ALTERNATIVE PRIORS FOR THE HIERARCHICAL MODEL

In the main text we argued that the hierarchical model interpretation is highly flexible and allows for
straightforward extensions. In this section we will demonstrate two variants that use either a Laplace
or a mixture of Gaussians prior, coupled with hard-EM for learning the parameters of the hierarchical
model.

G.1 FEDERATED LEARNING WITH LAPLACE PRIORS

Lets start with the Laplace variant; the Laplace density for a specific local parameter φsi will be:

p(φsi|wi) =
λ

2
exp(−λ|φsi −wi|). (32)

Therefore the local objective of each shard and the global objective will be

Ls(Ds,w,ws) :=

Ns∑
i

L(Dsi,ws)− λ
∑
j

|wsj −wj |+ C, (33)

L(w) :=
∑
s

Ls(Ds,w,ws) (34)

where again the global objective is a sum of all the local objectives and C is a constant independent
of the optimization. We can then proceed, in a similar fashion to traditional “cross-device” FL,

12

ICLR 2021 - Workshop on Distributed and Private Machine Learning (DPML)

by selecting a subset of shards B to approximate the global objective. On these specific shards,
we will then optimize Ls with respect to ws while keeping w fixed. Interestingly, due to the L1

regularization term that appears in the local objective, we will have, depending on the regularization
strength λ, several local parameters ws that will be exactly equal to the server parameters w even
after optimization. Now given the optimized parameters from these shards, w∗s , we will update the
server parameters w for the M-step by either a gradient update or a closed form solution. Taking the
derivative of the global objective with respect to a wj we see that it has the following simple form

∂L

∂wj
= λ

∑
s∈B

sign(wsj −wj). (35)

By setting it to zero, we see that the closed form solution is again easy to obtain

∂L

∂wj
= 0⇒ λ

∑
s∈B

sign(wsj −wj) = 0⇒ wj = median(w1j , . . . ,wBj) (36)

since the median produces an equal number of positive and negative signs. Using the median in the
server for updating its parameters is interesting, as it is more robust to “outlier” updates from the
clients.

G.2 FEDERATED LEARNING WITH MIXTURE OF GAUSSIAN PRIORS

The mixture of Gaussians prior will allow us to learn an ensemble of models at the server. The density
for the entire vector of local parameters ws in the case of K equiprobable components in the mixture
will will be

p(φs|w1:K) =
1

K

∑
k

N (wk, (1/λ)I). (37)

This will lead to the following local and global objectives

Ls(Ds,w1:K ,ws) :=

Ns∑
i

L(Dsi,ws) + log
∑
k

Zk
K

exp

(
−λ
2
‖ws −wk‖2

)
, (38)

L(w1:K) :=
∑
s

Ls(Ds,w1:K ,ws) (39)

where Zk is the normalizing constant of component k. Now we can proceed in a similar fashion
and select a subset of shards B to obtain the φ∗s while keeping the parameters of the prior w1:K

fixed. Now by taking the gradient with respect to one of the members of the ensemble wk, given the
optimized local parameters φ∗s , we see that

∂L

∂wk
= λ

∑
s

Zk

K exp(−λ2 ‖ws −wk‖2)∑
j
Zj

K exp(−λ2 ‖ws −wj‖2)
(ws −wk). (40)

Notice that this gradient estimate can also be interpreted in terms of a posterior distribution over the
index z (taking values in {1, . . . ,K}) given the “observed” variables ws; we can treat 1/K as the
prior probability of selecting component z = k, i.e., p(z = k) and Zk exp(−λ2 ‖ws −wk‖) as the
probability of ws under Gaussian component k. In this way, the weighting term can be written as

Zk

K exp(−λ2 ‖ws −wk‖2)∑
j
Zj

K exp(−λ2 ‖ws −wj‖2)
= p(z = k|ws,w1:K , λ). (41)

This make apparent the connection to Gaussian mixture models, since p(z = k|ws,w1:K , λ) is
equivalent to the responsibility of component k generating ws. Now we can again find a closed form
solution for wk by setting the derivative to zero

∂L

∂wk
= 0⇒ λ

∑
s

p(z = k|ws,w1:K , λ)(ws −wk)⇒ wk =
∑
s

p(z = k|ws,w1:K , λ)∑
j p(z = k|wj ,w1:K , λ)

ws,

(42)

which is again similar to the closed form update for the centroids in a Gaussian mixture model when
trained with EM.

13

	Introduction
	A hierarchical model interpretation of federated learning
	FedAvg as learning in a hierarchical model
	The FedSparse algorithm: sparsity in federated learning

	Experiments
	Reducing the communication cost
	FedSparse in practice
	Experimental details and additional results
	Additional results

	Correspondence between single step EM and gradient ascent
	Derivation of the local loss for FedSparse
	Local optimization of the binary gates
	Alternative priors for the hierarchical model
	Federated learning with Laplace priors
	Federated learning with mixture of Gaussian priors

