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ABSTRACT

Classical federated learning approaches incur significant performance degrada-
tion in the presence of non-IID client data. A possible direction to address this
issue is forming clusters of clients with roughly IID data. We introduce feder-
ated learning with taskonomy (FLT) that generalizes this direction by learning
the task-relatedness between clients for more efficient federated aggregation of
heterogeneous data. In a one-off process, the server provides the clients with a
pretrained encoder to compress their data into a latent representation, and transmit
the signature of their data back to the server. The server then learns the task-
relatedness among clients via manifold learning, and performs a generalization of
federated averaging. We demonstrate that FLT not only outperforms the existing
state-of-the-art baselines but also offers improved fairness across clients.1

1 INTRODUCTION & RELATED WORK

Federated learning is a new paradigm that offers significant potential in elevating edge-computing
capabilities in modern massive distributed networks. While presenting great potential, federated
learning also comes with its own unique challenges in practical settings (Konečnỳ et al., 2015;
2016). Recent studies focus on systemic heterogeneity (Kairouz et al., 2019; Li et al., 2020a),
communication efficiency (McMahan et al., 2017; Konečnỳ et al., 2016; Sattler et al., 2019), privacy
concerns (Geyer et al., 2017; Bagdasaryan et al., 2020) and more recently on fairness (Mohri et al.,
2019; Li et al., 2019) and robustness across the network of clients (Sun et al., 2019; Wang et al.,
2020). A defining characteristic of massive decentralized networks is stochastic heterogeneity of
client data; i.e., clients possess non-independent and identically distributed (non-IID) data. (Li et al.,
2020b) identifies statistical heterogeneity as the root cause for tension between fairness and robustness
constraints in federated optimization. (McMahan et al., 2017; Li et al., 2018) investigate the impact
of heterogeneous data distributions on the performance of federated averaging algorithm, FedAvg,
and demonstrate significant performance degradation in non-IID settings. Personalized federated
learning tackles data heterogeneity by forming personalized models for clients via meta-learning
or multi-task learning (Smith et al., 2017; Jiang et al., 2019; Fallah et al., 2020; Li et al., 2020b).
Clustered federated learning addresses this problem by iterative (or recursive) assignment of clients to
separate clusters based on model or model update comparisons at the server side (Ghosh et al., 2020;
Mansour et al., 2020; Sattler et al., 2020; Briggs et al., 2020; Xie et al., 2020). The effectiveness of
clustering approaches hinges upon the quality of cluster formation through this iterative assignment
process. Besides, clustered federated learning approaches are sensitive to initialization.

Inspired by the idea of “taskonomy” (Zamir et al., 2018), we introduce a client relatedness exploration
approach based on contractive encoding of client data followed by manifold learning at the server. Our
main contributions can be summarized as follows: i) we propose federated learning with taskonomy
(FLT), which learns the task-relatedness among clients and uses it in the server-side aggregation
for federated averaging of non-IID data, without requiring any prior knowledge about the task-
relatedness among clients; ii) we empirically show that FLT offers faster convergence compared
to existing state-of-the-art baselines; iii) we demonstrate that FLT reaches a higher test accuracy

∗Equal contributions.
1The code is available at https://github.com/hjraad/FLT.
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Figure 1: High-level architecture of FLT.

Figure 2: Forming C = 5 clusters for a
network of M = 25 clients. a) Ã in the
form of an adjacency matrix (re-ordered
on the right), b) corresponding client re-
latedness graph (re-ordered on the right).

compared to the state-of-the-art baselines across two federated learning settings (2% and 40%, on
the commonly used FEMNIST (Caldas et al., 2018) and a newly-introduced “Structured Non-IID
FEMNIST” datasets); iv) finally, we show that FLT offers improved fairness (measured in terms of
variance of test accuracies across clients), besides the improved accuracy.

2 FEDERATED LEARNING WITH TASKONOMY

Majority of the clustered federated learning approaches (Ghosh et al., 2020; Mansour et al., 2020;
Sattler et al., 2020; Briggs et al., 2020; Duan et al., 2020) enforce a hard membership constraint on
the clients to form disjoint clusters where every client can belong to only one cluster. In contrast,
we allow for an arbitrary symmetric task-relatedness matrix. To form clusters, these approaches
mostly compare the clients based on their model parameters using a distance metric (such as L2

norm, or cosine similarity), which in practice does not capture the underlying manifold of data in the
model parameter space or any other representation space. We instead propose a one-shot method
for learning the task-relatedness matrix (coined as FLT) that benefits from manifold approximation
(metric learning with UMAP (McInnes et al., 2018)) at the server side before applying a distance
metric. A high-level sketch of the proposed approach is depicted in Fig. 1. As can be seen, we
consider three abstraction levels: i) data level, where data samples live in Rd; ii) encoder level, where
a contractive latent space representation of client data is extracted in an unsupervised fashion (samples
are nonlinearly projected to Re); iii) manifold approximation level with UMAP, where samples live
in Ru. The encoder is provided by the server to the clients. This allows them to apply one-shot
contractive encoding on their local data, followed by k-means on the outcome and return the results
to the server. At server side, UMAP is applied to approximate the arriving clients embeddings. This is
followed by applying a distance threshold to determine client dependencies and form an adjacency
matrix or a client task-relatedness graph (see Fig. 2).

Learning client task-relatedness. The proposed approach, FCR(·), is described in Algorithm 1.
The server broadcasts an encoder G(·) to all the M clients in S. This broadcast is one-off and
this downlink communication will not be repeated. We considered a convolutional autoencoder
(ConvAE) with its frozen encoder section employed for extracting latent embeddings. ConvAE not
only helps compressing the information that has to be sent to the server, but also creates a less noisy
representation of the client data. Upon receiving G(·) clients compute Em := G(Dm), where Dm

denotes the dataset of client m (∈ [M ]) and Em denotes its embedding set of size |Dm|. The elements
of Em live in Re with e referring to the latent embedding dimension. Even though Em is compressed
as compared toDm, it turns out that it can still be further distilled and yet capture enough information
for our downstream federated learning purpose. Therefore, each client applies kMEANS(·) on Em and
sends the outcomeMm := {µ1, · · · , µk} (a set of size k) back to the server. The fine-tune mode is
provisioned to accommodate encoders pretrained on a totally different dataset. In such a case, clients
will be asked to run F epochs of SGD from their latest state on their most recent dataset. The server
constructsM := {M1, · · · ,MM} and applies UMAP (McInnes et al., 2018) toM and constructs
Z := {Z1, · · · ,ZM} with Zm := {um,1, · · · , um,k}. Z contains k×M elements each living in Ru,
with u being typically 2 or 3. In most prior work, a distance metric (L2 or cosine) is directly applied,
which could be a limiting factor for non-convex risk functions and incongruent non-IID settings
(Sattler et al., 2020). After UMAP, the server applies a distance metric to construct an adjacency
matrix Ai,j := min ‖Zi − Zj‖2 where the minimum pairwise distance among the elements of Zi
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and Zj are taken into account. We refer to the (i, j)-th element of matrix X as Xi,j and its i-th row
with Xi. Here, for the sake of simplicity, we consider a hard-thresholding operator Γ applied on
A leading to Ã, where Ãi,j = Γ(Ai,j) = Sign(Ai,j − γ) with γ a threshold value. Two different
demonstrations of Ã for a toy setup with M = 25 clients is depicted in Fig 2: a) adjacency matrix, b)
client relatedness graph. On the left, the clients are ordered based on their ID’s and on the right they
are re-ordered according to their adjacency weights resulting in the formation of C = 5 clusters.

Algorithm 1: Form Client Relatedness (FCR)
Require: MODE, S, G(·), Γ(·), k
Server broadcasts G(·) to all clients in S
for each client m in S do

if MODE = fine-tune then
Client runs F epochs to fine-tune;

end
Client computes its own embedding:
Em ← G(Dm);

Client applies k-means clustering to Em’s:
Mm := {µ1, · · · , µk} ← kMEANS(Em);
Client sendsMm to the server.

end
Server updatesM := {M1, · · · ,MM}
Server (re)computes

Z := {Z1, · · · ,ZM} ← UMAP(M)
Server constructs the adjacency matrix:
Ai,j := minr,s ‖ui,r − uj,s‖2,

∀i, j ∈ [M ] & ∀r, s ∈ [k] .
Return: Ã := Γ(A)

Algorithm 2: FLT
Require: S, M , T , W 0, pm
Initialize Clustering:

Ã← FCR(normal,S, G(·),Γ(·), k)
for t = 0, · · · , T − 1 do

wt
1, · · · , wt

m ←W t

Server selects a subset St of clients;
Server sends wt to all clients in St;
for each client m in St do

for epoch e = 1, · · · , E do
wm ← wm − η∇Fm(wm)

end
wt+1

m ← wm

end
Each client sends wt+1

m to the server.
Server updates W t = [wt

1, · · · , wt
M ];

Server updates the model weights:
W t+1 ←W tÃdiag(pm/‖Ãm‖0)

end

Federated averaging with taskonomy. FLT in Algorithm 2 starts with an initialization stage by
calling the normal mode of FCR(·). Note that this initial round with FCR(·) can happen in a few
stages and excluding a few clients does not impact FLT. Next, the typical T rounds of communication
akin to FedAvg will be run, where Fm is the empirical risk over local data Fm = 1

nm

∑nm

j=1 lj(w),
with nm denoting the sample size of client m. The server will construct and optimize a set of
local models in W t = [wt

1, · · · , wt
M ]. For notation simplicity, each model parameter set wt

m is
assumed to be reshaped into a vector. Following that, the sever updates the local models weights
using W t+1 = W t. Ã.diag(pm/‖Ãm‖0). The adjacency matrix Ã is re-ordered using hierarchical
clustering (Müllner, 2011) into a soft clustering matrix and determines which client models are
associated and should be aggregated and updated together. Notably, when distinct cluster formations
are discovered, all the clients in one cluster (blocks in Fig. 2) will only have a single model. In that
case, W t = [wt

1, · · · , wt
C ], with C denoting the total number of extracted clusters with be updated.

3 EVALUATION

We opt for image classification as our downstream application of federated learning. For performance
evaluation, we employ two different datasets: i) Federated EMNIST (FEMNIST) in LEAF (Caldas
et al., 2018) which is made out of Extended MNIST (EMNIST) (Cohen et al., 2017), ii) a newly
designed structured non-IID FEMNIST. FEMNIST is a standard dataset with 805, 263 samples that
can accommodate up to 3550 clients. Based upon EMNIST and similar to FEMNIST, we build a new
dataset with more extreme structured non-IID conditions and call it Structured Non-IID FEMNIST.
To this aim, we consider the “balanced” dataset of EMNIST, containing 131, 600 samples on 47
classes. We use 112, 800 for training (2400 samples per class) and the remainder 18, 800 for testing.
The encoder provided to clients is pretrained on a totally different dataset, CIFAR100 (Krizhevsky
et al., 2009), and thus, an initial fine-tuning per client would be required. This is to demonstrate that
lacking a holistic encoder is not a bottleneck for FLT.

Scenario-1 [FEMNIST]: We import the standard FEMNIST dataset and construct a network of 200
clients according to train and test data distributions defined in (Caldas et al., 2018). There are no
predefined clusters in FEMNIST and it is up to the federated learning method to form clusters.
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Table 1: Test accuracies (%) for Scenario-1.

MLP CNN

Method acc. var. acc. var.

FedAvg 72.76±0.76 202.61 81.64±0.66 147.03
IFCA 61.24±0.84 176.38 81.47±0.66 118.71
FedSEM 72.45±0.76 185.96 79.99±0.68 156.27
FLT 74.11±0.74 171.31 82.14±0.65 145.03

Table 2: Test accuracies (%) for Scenario-2.

Method acc. var.

FedAvg 46.50±0.36 100.27
FedSEM 43.53±0.36 406.60
FLT 86.51±0.24 207.60

Figure 3: Average accuracy of Scenario 1 for CNN. Figure 4: Acc. Scenario 2, C = 10, M = 2400.

Scenario-2 [Structured Non-IID FEMNIST]: We employ our newly introduced “Structured Non-
IID FEMNIST”. As mentioned earlier, this is built with the purpose of introducing more extreme and
structured non-IIDness in FEMNIST. To this aim, we impose label distribution skew (across clusters)
as well as quantity skew following a power law for the number of samples per client in each cluster,
akin to (Li et al., 2018). We consider C = 10 clusters, each containing 5 distinct character classes
(total of 12, 000 data samples per cluster), except the last one containing 2 classes (4, 800 samples).
We also consider a larger network with M = 2400 clients and 240 clients per cluster.

Network parameters. For the experiments on Structured Non-IID FEMNIST, we use a multi-layer
perceptron (MLP) with ReLU activation, and a single hidden layer of size 200. For experiments on
FEMNIST, we use both the MLP mentioned earlier, as well as the standard CNN proposed in (Caldas
et al., 2018). See supplementary material for more details. We set the number of local epochs to
E = 5, and the total communication rounds to T = 100, unless otherwise mentioned. The local
training is a mini-batch SGD with batch size of 10 and learning rate η = 0.01. For FLT, the size of
the latent embedding is e = 128 and k in kMEANS is set to 2. Even though on the client side k can
be adjusted according to the number of client classes. The number of fine-tuning epochs is set to
F = 5, and γ = 1. The client participation fraction is set to 20%.

Baselines, competitors, and fairness. We consider FedAvg (McMahan et al., 2017) as baseline
where a single global model is trained for the whole network; We also compare our performance
with two of the most recent state-of-the-art clustered federated learning approaches called IFCA
(Ghosh et al., 2020) and FedSEM (Xie et al., 2020). Note that FedSEM already outperforms other
recent baselines such as FedProx (Li et al., 2018) and CFL (Sattler et al., 2019). Among several
interesting approaches to fairness in federated learning, following (Li et al., 2019), we report the
variance of model accuracies across clients as a measure of fairness.

Evaluation results for Scenarios-1. The results in (Ghosh et al., 2020), IFCA, rely on an initial-
ization with FedAvg for “weight sharing”. Here, all the MLP experiments are run for T = 1000
communication rounds, and those for CNN are run for only T = 100 rounds, except for IFCA
which is run for 1500 rounds for both MLP and CNN (including 500 rounds for initialization). The
test accuracies and corresponding variances are summarized in Table 1. We marginally outperform
FedSEM and FedAvg (by about 2%) for both MLP and CNN. We also significantly outperform
IFCA in the MLP setting and marginally outperform in the case of CNN. However, it takes IFCA
1500 communication rounds to reach the performance regime the other methods converged to in
about 100 rounds. For this reason, we omit IFCA in our next experiments. The convergence graphs
of average test accuracies is illustrated in Fig 3 where FLT is the fastest in terms of convergence. We
argue that FEMNIST may not have a clear cluster structure and thus a cluster-based methods might
not offer a significant gain. This is the main motivation behind designing Scenario-2.
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Table 3: Communication complexity analysis.

FLT FedSEM (Xie et al., 2020) IFCA (Ghosh et al., 2020)

M ∗Wenc + kM e︸ ︷︷ ︸
one-off

+2ρMWlocalT 2ρMWlocalT ρMWlocalT (C + 1)

Evaluation results for Scenarios-2. Convergence graphs of average test accuracies are shown in
Fig. 4. The test accuracies (and their standard error) together with the fairness measure (variance
across clients) for at the last communication round T = 100 are summarized in Table 2. Interestingly,
FedSEM suffers in this scenario and roughly performs as good as FedAvg. This is due to tremendous
heterogeneity in model space and thus considerable increase in complexity of pairwise model
comparisons. This is exacerbated because of limited number of samples per clients resulting in
lower-quality models training. As a result, FedSEM falls almost back to FedAvg in performance.

4 CONCLUDING REMARKS

Summary and extensions. We proposed FLT that comes with the following notable advantages.
First, it is one-shot and considerably faster in convergence compared to its competitors, especially
in structured non-IID scenarios. Second, in contrast to most existing baselines, it does not require
prior knowledge about number of clusters to form them. Third, it performs slightly better than
the state-of-the-art baselines in standard federated learning settings and significantly outperforms
them in structured non-IID scenarios. Fourth, FLT offers improved fairness (least performance
disparity among clients) compared to the existing baselines in most presented scenarios. Finally, in
our extended work2, we provide more detailed experimentation and analyses also a convergence proof
for FLT under common assumptions required for the convergence of FedAvg. Another interesting
extension that we cover therein is when the number of clients grows to tens of thousands (in very
large-scale networks). In that case, the extended version of FLT has the flexibility to decompose
the client relatedness graph with hierarchical clustering (Müllner, 2011) into disjoint clusters and
degenerate to the same computation complexity level its competitors inflict.

Complexity and practical considerations. FLT introduces a one-off overhead due to the client
relatedness discovery process (FCR, Algorithm 1). However, owing to FCR, it is faster than the
existing iterative baselines and less prone to convergence issues. One can argue that this step
can be susceptible to security issues during the uplink communication (akin to standard FedAvg
communications). A possible solution to address this is adding encryption and client ID verification
processes, which are outside the scope of our work. From communication complexity perspective,
this overhead requires the server to send an encoder model (Wenc) to the clients, and the clients to
send an array of size ke (with k in k-means and e denoting the latent embedding dimension of the
encoder) to the server. A rough estimate of the communication complexity of the proposed FLT, and
two discussed state-of-the-art competitors (FedSEM and IFCA) is summarized Table 3. As can be
seen, the communication complexity of FLT and FedSEM are essentially the same except for the
first two one-off terms (without T for total communication rounds) and could be neglected. Note that
this is an initialization step and it can also happen in multiple steps. Excluding a few clients from this
process, due to for instance their unavailability, does not impact the performance of FCR and in turn
FLT. On the other hand, IFCA mandates roughly (C + 1)/2 times (C being the number of clusters)
more communication complexity. This is because in every communication round, C virtual center
models will have to be sent to all the participating clients. From compute complexity perspective,
possible fine-tuning of the encoder is only for a small number of epochs (F = 5 in our experiments)
on an encoder which is as simple as the local client models; and this is yet another one-off process
that can be neglected over long runs.
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han, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings. arXiv
preprint arXiv:1812.01097, 2018.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending mnist
to handwritten letters. In 2017 International Joint Conference on Neural Networks (IJCNN), pp.
2921–2926. IEEE, 2017.

Moming Duan, Duo Liu, Xinyuan Ji, Renping Liu, Liang Liang, Xianzhang Chen, and Yujuan Tan.
Fedgroup: Ternary cosine similarity-based clustered federated learning framework toward high
accuracy in heterogeneity data. arXiv preprint arXiv:2010.06870, 2020.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning: A meta-
learning approach. arXiv preprint arXiv:2002.07948, 2020.

Robin C Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated learning: A client
level perspective. arXiv preprint arXiv:1712.07557, 2017.

Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework for
clustered federated learning. arXiv preprint arXiv:2006.04088, 2020.
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