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ABSTRACT

Federated Averaging (FedAVG) has become the most popular federated learning
algorithm due to its simplicity and low communication overhead. We use sim-
ple examples to show that FedAVG has the tendency to sew together the optima
across the participating clients. These sewed optima exhibit poor generalization
when used on a new client with new data distribution. Inspired by the invariance
principles in Arjovsky et al., 2019; Parascandolo et al., 2020, we focus on learn-
ing a model that is locally optimal across the different clients simultaneously. We
propose a modification to FedAVG algorithm to include masked gradients (AND-
mask from Parascandolo et al., 2020) across the clients and uses them to carry
out an additional server model update. We show that this algorithm achieves bet-
ter accuracy (out-of-distribution) than FedAVG, especially when the data is non-
identically distributed across clients.

1 INTRODUCTION

Federated learning (McMahan et al., 2017; Konecný et al., 2016; Kairouz et al., 2019; Wang et al.,
2020a) has emerged as an attractive distributed learning paradigm where a large part of the model
training is pushed towards edge devices. Unlike traditional centralized learning, federated learning
enables collective training of a global model (or server model) for a common objective while the
training data remains distributed at the clients’ end. This ensures data privacy to an extent and helps
in training a shared model without heavy computational or storage requirements at the server.

There are several callenges to federated optimization. The key challenges being 1) slow and unre-
liable network connection between the client and the server (Karimireddy et al., 2020), 2) hetero-
genity among client devices and device usage pattern, 3) non-IID (non-independent and identically
distributed) data at clients due to varying client behaviour. The most popular algorithm in feder-
ated setting emphasising on handling non-iid and unbalanced data and communication bottleneck is
FedAVG (McMahan et al., 2017). It performs multiple local steps at the client before aggregating
the parameters for the server model. While it has shown success in several areas including tackling
communication overhead, its performance on non-IID data is an active area of research (Haddad-
pour & Mahdavi, 2019; Li et al., 2020; Wang et al., 2020b; Karimireddy et al., 2020). Extension
of this research to out-of-distribution generalization in a federated setting is relatively new and little
explored.

In this paper, we show that averaging parameters of local client models as in FedAVG, results in
a server model having minima close to locations of global minima of the individual client models,
instead of at the consistenet minima; and with a loss value equal to the average of client losses at that
location using the concept of loss surfaces. The same have been described theoretically as ”gradient
bias” in Yao et al., 2020 and as ”client-drift” in Karimireddy et al., 2020. Though the server model
in a federated setting aims to learn a global objective, averaging of parameters fails in effectively
doing this since the minima (both global and local) of each client varies drastically due to dissimilar
user behaviour. This is more prominent when the data is non-iid. To handle this, we introduce
a modification to the FedAVG algorithm. FedGMA (Federated Gradient Masked Averaging) use
a AND-Masked (Parascandolo et al., 2020) gradient update along with parameter averaging (as in
FedAVG) to ensure update steps in the direction of the optimal minima across clients.
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(a) Loss surface of client A (b) Loss surface of client B (c) FedAVG server loss surface

Figure 1: Loss surfaces of two clients, A and B, with respect to a two-parameter vector (θ =
(θ1, θ2)) varied across their limits, and their average loss surface representing FedAVG server loss
surface. Algorithms that average client model parameters or gradients with respect to the client
model parameters for server model update forgoes information that can identify shared patterns or
consistent minima across clients.

2 CONVERGENCE OF FEDAVG

Consider figures 1a. and 1b., showing the top view of loss surfaces of two fictional clients, A and B
respectively. Note that client A has a local minima at (-0.5, 0.5) (here after referred to as Lmin) and
a global minima at (0.5, -0.5) (here after referred to as GAmin) and client B has a local minima at
(-0.5, 0.5) (Lmin) and a global minima at (-0.5, -0.5) (here after referred to as GBmin). Depending
on the initial values of the parameters, models trained on a client’s local data converges to either
of its two minima. It is observable that the global minima of the two clients (GAmin and GBmin)
are apart and converging to either one of them would result in a high loss on data from the other
client. Whereas, the local minima (Lmin) of both the clients are overlapping and the loss of a client
corresponding to the data from the other client will be less for this local minima. Hence, a server
model converging to this local minima (Lmin) will have better generalization on other clients. This
is backed by the principle that good explanations are hard to vary (Parascandolo et al., 2020).

In FedAVG, where the client model parameters are averaged to obtain the server model, the server
loss can be approximated to the average of the loss values of clients participating in the update
(server loss with MSE and cross-entropy loss at clients approximated in Appendix A.1) and is as
shown in Figure 1c. It is observable that the approximated server loss is minimum at GAmin and
GBmin, though generalization would be better at the shared or consistent local minima Lmin. Fe-
dAVG optimizes to a solution that sew together the individual objectives of the clients, instead of
identifying the invarient and consistent patterns across the clients.

3 PROPOSED ALGORITHM - FEDGMA

In this section, we describe the proposed algorithm, FedGMA(Federated Gradient Masked Averag-
ing) in detail. The algorithm has three main steps: 1) local updates to the client model, 2) aggre-
gation of and-masked gradients with respect to the initial parameters of the respective client model,
3) server model updates where each parameter is the average of individual client parameters along
with an update step along the masked gradient.

Similar to FedAVG, the proposed algorithm maintains a shared server model, aiming at learning a
common objective, and a local model for each client, trained on their local data (from initial state pa-
rameters equal to the server model parameters at that communication round), as shown in algorithm
1. In our setting, we have assumed that each client undergoes the same number(n) of local stochastic
gradient descent steps. Performance of FedGMA corresponding to the number of local epochs will
be studied later. At the end of n epochs, each client returns the gradient of their loss with respect to
the initial parameters of the respective client model and the client model parameters. These gradi-
ents are masked at the server using an and-mask and the mean of the masked gradients is considered
for the server model update along with the weighted average of the client model parameters.

Seperate step sizes were used for the server update(ηs as in line 9 of ServerUpdate in algorithm
1) and client update(ηc as in line 4 of ClientUpdate in algorithm 1). Larger server model step size
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Algorithm 1 Gradient Masked Averaging
ServerUpdate:

1: Initialize w0

2: for each server epoch, t = 1,2,3,... do
3: Choose C clients at random
4: for each client, k do
5: gradk, wk = ClientUpdate(wt−1)
6: end for
7: grad = m

nk

∑
k

1
mk
Mask(gradk)

8: w = m
nk

∑
k

1
mk
wk

9: wt = w − ηs grad
10: end for

ClientUpdate(w):
1: Initialize w0 = w
2: for each local client epoch, i=0,1,2,3,..,n do
3: gi = ∇wi

L(wi)
4: wi+1 = wi − ηc gi
5: end for
6: return gi, wi+1 to server

enables faster convergence of the server model while a smaller client model step size keeps the client
models from drifting farther away from the server model, thereby preventing each client model from
converging to their global minima (Karimireddy et al., 2020).

AND-Mask. Inspired by the work Parascandolo et al., 2020, we use an AND-Mask on
gradients(gradk) before averaging (weighted with respect to the number of examples in that client
(McMahan et al., 2017)) them for server update. The AND-Mask is mathematically similar to a
’logical and’. Intuitively, it can be visualized as a zeroing out the gradient components that have
inconsistent signs across clients. Formally, masked gradients vanishes for components where there
are less than t ∈ k/2 + 1, ..., k (where k is the total number of participating clients) gradient com-
ponents that agree to the same sign across clients, and is one otherwise. That is, 50% or more
gradient components should be having agreeing gradient signs across clients for the gradient to be
activated and included in the server update. This ensures that the server model converges to a so-
lution consistent across clients. AND-Mask follows the strategy that to converge to a consistent
minima that generalises better, only consistent gradient directions across clients corresponding to a
”logical AND” are to be pursued. Similar to AND-Mask implementation in Parascandolo et al., 2020
for environments sharing invariant mechanisms, AND-Masked gradient component with respect to
a client i in a federated setting can be represented as mask(gi) = gi ∗ I{pk≤|∑k sign(gc∈k)|} where,
p ∈ [0, 1] is the percentage of total number of clients, k, whose gradients with respect to client
parameters need to be consistent and I is the boolean indicator function facilitating this. Averaging
masked gradients is equivalent to averaging the gradients directly when all the client gradients being
considered are of the same sign. AND-mask can also be viewed as a regularizer which prevents
overfitting to certain clients by prohibiting further updates in model parameters when the gradients
with respect to the parameters are inconsistent across clients.

4 EXPERIMENTS

We run experiments on non-convex optimization represented by a CNN for multi-class digit recog-
nition and binary classification (less than 5 and greater than or equal to 5) on colored MNIST, where
the data was distributed both identically and non-identically across clients and tested on an out-of-
distribution dataset. Inspired by the experiments in Arjovsky et al., 2019, for binary classification,
the data in all train environments or clients were colored red if the digit was less than 5 and green oth-
erwise with probabilities varying between 0.1 and 0.2 for different clients. For the out-of-distribution
test set, the coloring schema was reversed (green if the digit was less than 5 and red otherwise) with
a probability of 0.9 (see Appendix for samples). For multi-class digit recognition, inspired by the
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(a) (b)

(c) (d)

Figure 2: Out-of-distribution (OOD) accuracy vs. communication rounds plots of binary classifi-
cation in IID (a) and non-IID (b) settings and multiclass classification in IID (c) and non-IID (d)
settings with different server step size(lr s) values. FedGMA had a better OOD generalization per-
formance than FedAVG. It is more prominent with a significant improvement in OOD accuracy
when data is distributed non-identically for both binary and multiclass classification with the right
server step size hyperparameter.

experiments in Arpit et al., 2019, each class or digit was assigned two background colors and two
foreground colors that were unique to the class. For the out-of-distribution test images, foreground
and background colors were chosen randomly from a set of 10 set of colors independent of the
training colors (see Appendix for samples). The distribution of data across clients was done in ac-
cordance to the experiments in McMahan et al., 2017. For IID distribution, the entire train data
was shuffled and split among the clients such that every client would get images of all digits. For
Non-IID distribution, the train data was split such that each client would get approximately equal
number of images from exactly two digits.

In the experiments, we have chosen the AND-Mask threshold percentage hyperparameter, p = 0.8,
that is, atleast 80% of the clients should be agreeing on gradient signs across clients for the gradients
to not be zeroed out. Server step size (lr s in Figure 2) is another hyperparameter introduced in this
algorithm. We have considered FedAVG as the baseline and FedGMA was studied with the same
hyperparameters as the FedAVG baseline for effective comparison. This includes a 3-epoch client
training with SGD(Stochastic Gradient Descent) optimizer having a step size of 0.001. It was ob-
served that the proposed algorithm outperforms FedAVG in generalization to out-of-distribution test
sets for both IID and Non-IID settings, though the performance improvement was more prominent
when the data distribution among clients was non-IID.

5 CONCLUSION AND FUTURE WORK

In this paper, we show how FedAVG and other federated optimization algorithms that average gra-
dients to update the server model, converges to a minima that is a sewn together version of all client
minima. We introduce a modification to the client update step of FedAVG to incorporate an update
step using AND-Mask on gradients with respect to initial client model parameters. This step ensures
that the server model converges to an inconsistent minima across clients. We experimentally show
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that FedGMA achieves a better generalization performance on out-of-distribution test images than
FedAVG.

In the future, we would like to expand our work to include more experiments on other state-of-the
art datasets like CIFAR-10 and Shakespeare language dataset and comparisons with other existing
federated optimization algorithms like SCAFFOLD and FedProx. We would like to study the effect
of hyperparameters like t, the threshold for the number of client gradients to be consistent, and
n, the number of local epochs. Understanding the effect of the AND-Mask on existing federated
optimization algorithms would be an interesting area to explore as well.
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Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn Song, Weikang Song, Se-
bastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma,
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A APPENDIX

A.1 APPROXIMATE SERVER LOSS

When loss at the client is MSE Loss,

Loss at client A, JA = (y − wAx)
2

Loss at client B, JB = (y − wBx)
2

Average loss surface of the two clients =
1

2
(JA + JB)

=
1

2
((wA

2 + wB
2)x2 + 2y2 − 2(wA + wB)xy)

=
1

2
(wA

2 + wB
2)x2 + y2 − (wA + wB)xy

Loss at FedAVG server, J = (y − wx)2 where, w =
wA + wB

2

= (
wA + wB

2
)2x2 + y2 − (wA + wB)xy

=
1

2
(JA + JB)−

1

2
(wA

2 + wB
2)x2 + (

wA + wB

2
)2x2

≈ 1

2
(JA + JB)

When the weights are close to zero or the variance between the two clients are small, (wA+wB

2 )2x2−
1
2 (wA

2 + wB
2)x2 becomes negligible and J ≈ 1

2 (JA + JB).

When loss at the client is cross entropy Loss,

Loss at client A, JA =
∑

y log(wAx)

Loss at client B, JB =
∑

y log(wBx)

Average loss surface of the two clients =
1

2
(JA + JB)

=
1

2
(
∑

y log(wAx) +
∑

y log(wBx))

=
1

2
(
∑

y log(wA) +
∑

y log(wB)) +
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y log x

=
1

2
(
∑

y log(wAwB) +
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y log x

=
∑

y log(
√
wAwB) +

∑
y log x

Loss at FedAVG server, J =
∑

y log(wx) where, w =
wA + wB

2

=
∑

y log(
wA + wB

2
x)

=
∑

y log(
wA + wB

2
) +

∑
y log x
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When wA+wB

2 ≈ √wAwB , J ≈ 1
2 (JA + JB). This happens when the weights are all very small

and close to zero.

A.2 DATA SAMPLES - CMNIST

(a) (b)

Figure 3: Sample images from colored MNIST for binary classification. a) In train environments,
digits less than 5 marked by label 0 are colored red, while the digits greater than or equal to 5,
marked by label 1 are colored green. b) In the test environment, the colors are reversed. That is,
digits of label 0 are colored green and digits of label 1 are colored red. (Arjovsky et al., 2019)

(a) (b)

Figure 4: Samples images colored MNIST for multi-class classification. a) In train environments,
each class is given two unique foreground colors and two unique background colors. b) In the test
enviroment, the foreground color and the background color of each image is chosen randomly from
the list of colors independent of the colors in the train environments. (Arpit et al., 2019)
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