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ABSTRACT

Federated learning (FL) is a paradigm that allows distributed clients to learn a
shared machine learning model without sharing their sensitive training data. While
largely decentralized, FL requires resources to fund a central orchestrator or to
reimburse contributors of datasets to incentivize participation. Inspired by in-
sights from prior-independent auction design, we propose a mechanism, FIPIA
(Federated Incentive Payments via Prior-Independent Auctions), to collect mon-
etary contributions from self-interested clients. The mechanism operates in the
semi-honest trust model and works even if clients have a heterogeneous interest
in receiving high-quality models, and the server does not know the clients’ level
of interest. We run experiments on the MNIST, FashionMNIST, and CIFAR-10
datasets to test clients’ model quality under FIPIA and FIPIA’s incentive proper-
ties.

1 INTRODUCTION

Federated learning (FL) (Bonawitz et al., 2019; McMahan et al., 2017) is a mechanism that allows
decentralized clients to collaboratively learn a machine learning model while preserving individual
clients’ privacy. That is, clients use datasets that share the same feature space but differ in sample
space. However, without incentives, participating clients may provide obsolete information or decide
to opt out of participation. Also, clients can submit inferior models yet end up receiving updated
high-quality models. Hence, causing a free-rider problem (Feldman & Chuang, 2005).

There are numerous system designs (Chen et al., 2020; Jiao et al., 2019; Li et al., 2019; Yu et al.,
2020) that target this problem by having systems that reimburse clients that submit high-quality
models. Such systems hence design incentives for the supply of models to FL.

Correspondingly, we consider the clients receiving models and their incentives, the demand side of
FL. We assume (an assumption to be relaxed in future work) that clients submit models trained on
their entire dataset—with no need to incentivize them to do so. Under this assumption, we design a
system to collect resources from clients.

To do so, we adapt auction designs to allocate freely-replicable (digital) goods (Hartline, 2013)
to the FL setting and propose a system that works without central-entity evaluation. Our proposed
system shares higher quality models with clients that pay more, as we demonstrate using the MNIST
(LeCun et al., 1998), FashionMNIST (Xiao et al., 2017), and CIFAR-10 (Krizhevsky et al., 2009)
datasets. We show experimentally that non-truthful bidding is only limitedly profitable.

2 LITERATURE REVIEW

First, our model connects to models incentivizing parity in test accuracy in FL. (Li et al., 2019)
proposes a variant of a global objective criterion to induce parity in test accuracy between clients
holding non-i.i.d data. While this literature also studies the supply side, i.e., who receives models,
the paper implicitly assumes that the interest in high-quality models is homogeneous across clients
and tries to induce parity without collecting any monetary contributions.
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Our approach also connects to the literature on incentive design for FL (Chen et al., 2020; Jiao
et al., 2019; Yu et al., 2020). These papers propose systems that distribute a fixed incentive budget
to clients. Participating clients are promised payments depending on their model quality. These
payments incentivize clients to contribute high-quality models, but do not generate resources from
clients that receive models. Closest to our paper, (Chen et al., 2020) studies how to incentivize clients
to submit their full datasets to an FL system. Crucially, in their paper, the clients’ private information
is given by their maximal dataset size only, their interest in models they receive is assumed to be
known to the system. One of the main properties of FIPIA is that it works without such knowledge.

This paper uses tools from the honest-but-curious or semi-honest trust model (Beaver, 1991). Our
federated evaluation method is a variant of (Mugunthan et al., 2020), which operates in the same
trust model.

Finally, we use an incentive design, the circuit auction, from prior-independent mechanism design
(Hartline, 2013).

3 METHOD

We consider a horizontal FL setting. There are k clients i ∈ [k], k := {1, 2, . . . , k} that can evaluate
a model w on their test sets to get a measure of quality such as accuracy, Score(i, w). In usual FL
settings, all clients receive the same models w. In our approach, we relax this assumption. That is,
each client i receives model wi after every federated round. To determine who will get which model,
we also introduce payments ti, i = 1, 2, . . . , k, which clients pay to the server. These payments can
be re-distributed amongst clients at a later stage using an existing incentive mechanism (Chen et al.,
2020; Jiao et al., 2019; Yu et al., 2020).
Assumption 1. Clients maximize a linear combination of payments they make and the quality of the
model they receive,

θiScore(i, wi)− ti. (1)
θi represent client i’s valuation per unit of score. The valuations θi are not known to the server.

For example, Assumption 1 holds when clients incur a constant cost for each misclassified data point
in their test set in each federated round. Implicit in this assumption is that clients are uninterested in
other clients’ model qualities, i.e., there are no externalities between clients.
Assumption 2. Clients submit models trained on their entire dataset.

This assumption mirrors our focus on the demand side of FL. Our system leaves incentivizing high-
quality models to other incentive mechanisms.
Assumption 3. The datasets used by clients are drawn from the same distribution (i.i.d. data).

An extension of the proposed system to the non-i.i.d. setting will involve additional complexities,
compare (Hsu et al., 2019). We leave this for further work.

3.1 INSUFFICIENCY OF AVERAGE ACCURACY MAXIMIZATION

A standard FL system wishes to maximize the average model quality amongst all clients, i.e., it
maximizes maxw

∑k
i=1 λiScore(i, w), where λi ≥ 0, denotes the relative importance of client i.

In the notation introduced above, this corresponds to wi = w, for i = 1, 2, . . . , k.

Assuming that a central orchestrator or engineer for the model needs to be funded, a classical FL
system might not raise a sufficient amount of money to make the system sustainable. For example,
if funding is done through voluntary monetary contributions by clients, a free-rider problem arises
(Mas-Colell et al., 1995, Section 11.C), and systems will likely be under-funded. Interestingly, the
celebrated Vickrey-Clarke-Groves mechanism (Clarke, 1971) fails to collect any funds when applied
on the demand side of FL. In this mechanism, each client that receives a model pays the system an
amount corresponding to the negative effect it has on other clients. The receiving client pays the
difference in valuation, according to (1), for all other clients when it participates in contrast to when
it does not participate. As distributing the same model to an additional client does not have any
effect on other clients in our model, clients pay nothing. Hence, a system that collects funds in
environments with costly orchestration is needed.
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Function Description
Train(i, w) Updated model after training w incrementally on client i’s data
Thresh(b) Transmission probability based on bid b
Aggr(W) Aggregated model of models w ∈W
Punish(d) (Monetary) punishment based on deviation d
Score(i, w) Score of model w by client i

Table 1: Methods used in our algorithm.

3.2 FEDERATED INCENTIVE PAYMENTS VIA PRIOR-INDEPENDENT AUCTIONS (FIPIA)

Our main contribution is a system for collecting payments in the semi-honest trust model, presented
in algorithm 1. Our system is inspired by auction formats that guarantee (up to a multiplicative
constant) maximal revenue in a wide range of theoretical setting satisfying Assumptions 1 and 2
(Hartline, 2013; Goldberg & Hartline, 2001). Formalizing this optimality is part of follow-up work.

Algorithm 1: Federated Incentive Payments via Prior-Independent Auctions (FIPIA)
Input: Number of federated rounds T , Number of clients k
Client Initialization: Each client i ∈ [k] initializes models wi and sends bid bi to server
for t = 0, . . . , T do

foreach Client i do
wi ← Train(i, wi)

(p, s, ŝ)← FedEval(w, b)
Server draws a uniformly random permutation π : [k]→ [k]
foreach Client i do

if bi(ŝ− si) > bπ(i)(ŝ− sπ(i)) then
Client ι̂ transfers model ŵ giving score ŝ to i
ti ← bπ(i)(ŝ− sπ(i)) + pi

else
ti ← pi

Function FedEval(w, b):
Server Initialization: aij ∼ Bernoulli(Thresh(bi)), i 6= j ∈ [k], aii = 1,
Wi→ := {j ∈ [k]|aij = 1}, W→i := {j ∈ [k]|aji = 1}

foreach Client i do
Send wi to clients Wi→

foreach Client j do
Evaluate ŵi ←Aggr(W→j) and send ŵi to Clients Wj→

foreach Client j do
Evaluate sji ← Score(j, wi) and ŝji ←Score(j, ŵi), i ∈ [k] and send to Server

Server Evaluation: si ← med((sji )j∈Wi→), i ∈ [k]

ŝi ← med((ŝji )j∈Wi→), i ∈ [k]
ŝ← maxi∈[k] ŝi

pj ←
∑k
i=1Punish(s

j
i − si)+ Punish(ŝji − ŝi)

return p,s,ŝ

The mechanism starts with the submission of bids by clients, which are reports of their valuations
θi. These reports might or might not be truthful. For each federated around T , clients first train
on new data they receive. Then, our federated evaluation presented as a subroutine in algorithm 1
determines incentive payments for truthful evaluation, p, a vector of scores for each client’s model
s, the score ŝ of the model with the highest median score among all aggregated models. Then, the
server matches each client randomly with another client. The server first computes

bπ(i)(ŝ− sπ(i))
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from the median scores received in the federated evaluation. This value is assuming π(i)’s report
was truthful (bπ(i) = θπ(i)) the gain in objective for π(s) from being allocated the model. Client i
gets the best model if their corresponding value

bi(ŝ− si)

surpasses this value. The value for π(i) hence serves as minimum payment for i and incentivizes
high bidding. If i’s value surpasses π(i)’s value, the system declares i a winner, i gets the best model
ŵ which produces score ŝ.

Our federated evaluation function defines for each client a random set of receiver clients. Clients that
bid higher are more likely to receive models to evaluate. This design choice takes into account that
these are also most likely to receive the best model ŵ in the course of algorithm 1. Clients evaluate
all single and the average of all the models they receive. By sending these models to other agents
and collecting the median of reported scores, the server obtains accurate estimates of individual and
best model quality. Payments for reports deviating from the median incentivize truthful evaluations.

3.3 DESIGN CONSIDERATIONS

In this subsection, we discuss design considerations for the methods used in algorithm 1, compare
Table 1.

In this paper, we consider a semi-honest trust model in which clients follow the protocol specifica-
tion, but may attempt to learn honest clients’ private information from the models it receives, or may
collude with other clients to learn private information. Private information of honest clients can be
learned by performing model inversion and membership inference attacks (Nasr et al., 2018; Melis
et al., 2019; Geiping et al., 2020). To make our system compatible with the semi-honest trust model,
clients can implement Train(i, w) to produce differentially private models (Abadi et al., 2016;
Wang et al., 2019; 2020) to prevent these attacks.

The threshold function Thresh(b) determines how many models clients see in peer evaluations.
While a high value for Thresh(b) yields more accurate estimates of performance, it also induces
incentives for lowering bids for clients that hope to receive a high-quality model as an evaluator, and
not as a winner of the auction.

The punishment function incentivizes truthful reporting. In cases with heterogenous clients, choos-
ing small values of Punish(d) might be preferable, as otherwise incentives to participate in the
system for clients with small test sets might be lowered.

The aggregation function Aggr(W) can use arbitrary aggregation routines, be they federated aver-
aging McMahan et al. (2017), or involve search for the best model among the models to aggregate.

4 EVALUATION

We conducted experiments to evaluate the performance of our mechanism. All code can be found
under https://github.com/Indraos/MultiSidedFederation. We present results
for the MNIST dataset (LeCun et al., 1998). Our code also runs experiments for the CIFAR-10
(Krizhevsky et al., 2009) and Fashion-MNIST (Xiao et al., 2017) datasets. The MNIST and Fashion-
MNIST datasets consists of 70000 28x28 images each. There are 60000 training images and 10000
test images. The images are normalized using the training set mean and variance. For MNIST and
FashionMNIST, each client trained a simple network with two convolution layers followed by two
fully connected layers. The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes,
with 6000 images per class. There are 50000 training images and 10000 test images. For MNIST
and FashionMNIST, each client trained a simple network with two convolution layers followed by
three fully connected layers.

Our experiments uses k = 3 clients, with valuations 0.1, 0.5 and 0.6. Other valuations qualitatively
do not change our results. The clients plit the data in an i.i.d. fashion. Training dataset sizes are
50%, 40% and 10% of the dataset. To highlight incentive and adaptivity properties of our system
without peer evaluation, we set Punish(d) = 0 and Thresh(b) = 0.
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(a) Accuracy trajectories for clients in the
MNIST setup.

(b) Client objective value when bidding a report
unequal to valuation 0.5 in the MNIST setup.

(c) Accuracy trajectories for clients in the
FashionMNIST setup.

(d) Client objective value when bidding a
report unequal to valuation 0.5 in the

FashionMNIST setup.

(e) Accuracy trajectories for clients in the
CIFAR-10 setup.

(f) Client objective value when bidding a
report unequal to valuation 0.5 in the

CIFAR-10 setup.

Figure 1: Experiments for MNIST (top row), FashionMNIST (middle row) and CIFAR-10 (bottom
row). The left column shows the values in different clients in our first experiment. The figures in
the right column shows for an agent with valuation 0.5 the objective function when submitting bids
different from its valuation.
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4.1 THE EFFECTS OF BIDS AND DATASET SIZES

Our first experiment shows the histories of model qualities for clients with different dataset sizes and
bids. We assume that all clients bid their valuation truthfully. Figure 1 represents the accuracies of
different clients for the first 6 FL rounds. We note that how the quality of models for different clients
adapts in our model according to the bids placed. In particular, the FashionMNIST case shows that
the high-bidding model ends up with a higher-quality model than the other clients despite a much
smaller dataset, through a combination of being declared winner in the second-to-last round and
last-round training.

4.2 PROFITABILITY OF OVERBIDDING

Next, we study the incentive properties of our system, compare the right column of Figure 1.
We calculate the profit from bidding a value different from the valuation θi. For our exposi-
tion, we restrict to a setting with one client that has a fixed valuation θi = 0.5 and the two
other agents have valuations 0.1 and 0.6. We calculate the values (1) for client i when it bids
bi ∈ {0, 0.2, 0.4, 0.5, 0.6, 0.8, 1}. We observe that some deviations are profitable, but that bidding
close to truthfully is a or close to a local maximum of the objectives for the deviating agent.

5 CONCLUSION

In this paper, we introduce a system to secure funds from clients participating in FL. Our system
is adaptive as it gives models of different qualities to clients that have different valuations. We
investigated incentive properties of the system and find some instances of profitability of deviations.

Our work complements existing incentive designs for reimbursing model contributors in FL. In
future work, we plan to explore the integration of these systems into an incentive system for the
demand and supply side of FL and to give theoretical revenue guarantees.
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