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ABSTRACT

Federated learning is an effective way of extracting insights from different user de-
vices while preserving the privacy of users. However, new classes with completely
unseen data distributions can stream across any device in a federated learning set-
ting, whose data cannot be accessed by the global server or other users. To this
end, we propose a unified zero-shot framework to handle these aforementioned
challenges during federated learning. We simulate two scenarios here — 1) when
the new class labels are not reported by the user, the traditional FL setting is used;
2) when new class labels are reported by the user, we synthesize Anonymized
Data Impressions by calculating class similarity matrices corresponding to each
device’s new classes followed by unsupervised clustering to distinguish between
new classes across different users. Moreover, our proposed framework can also
handle statistical heterogeneities in both labels and models across the participat-
ing users. We empirically evaluate our framework on-device across different com-
munication rounds (FL iterations) with new classes in both local and global up-
dates, along with heterogeneous labels and models, on two widely used audio
classification applications — keyword spotting and urban sound classification, and
observe an average deterministic accuracy increase of ~4.041% and ~4.258%
respectively.

1 INTRODUCTION

Deep learning for audio classification is a broad research area with applications like Keyword Spot-
ting (KWS), urban sound identification, etc. KWS is an important application for detecting keywords
of importance to specific users, which could be used as voice commands to on-device personal as-
sistants such as Amazon’s Alexa, Apple’s Siri, etc. (Zhang et al.,[2017). Urban environment sound
classification is another interesting application particularly in context-aware computing, urban infor-
matics (Salamon et al.| 2014). The emergence of deep neural networks have conveniently alleviated
problems of creating shallow (hand-picked) features and have achieved state-of-the-art performance
in such speech classification tasks (Hinton et al.,[2012). With the recent compute capabilities vested
in resource-constrained devices, there is a huge research focus on audio classification using on-
device deep learning (Chen et al., 2014} Sainath & Paradal 2015).

Such applications require characterization of insights across numerous user devices for personal-
ization, and collaborative on-device deep learning becomes necessary. Federated Learning (FL) is
a decentralized method of training neural networks by just securely sharing model updates with a
server without the need to transfer sensitive local user data (Bonawitz et al., [2019; McMahan et al.}
2017). On-device federated learning has been an active area of research addressing challenges on
secure communication protocols, optimization, privacy preserving networks, etc. (Li et al., [2020).
However, handling new/unseen classes in local devices and training them in an FL setting for the
global model to possess characteristics of the new class is a challenging task, since data transfer
from local device to server and vice versa is not feasible. Moreover, the new class information of
one user is not known among the other users as well, hence the new classes could be similar or
different between the users. In addition, there are multiple statistical heterogeneities like model
heterogeneities (ability of end-users to architect their own local models), label heterogeneities and
non-IIDness across various communication rounds/FL iterations (disparate data and label distribu-
tions across devices).
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One way of handling model heterogeneities and independence in a federated learning setting is by
using knowledge distillation (Hinton et al., 2015) with a common student model architecture on
each local device (L1 & Wang| [2019). Label and model heterogeneities are handled in an inertial
Human Activity Recognition scenario in (Gudur & Perepul |2021). Federated learning for keyword
spotting (Leroy et al.,[2019), and new class learning and identification in various speech recognition
settings are addressed in (Taitelbaum et al.l 2019; 2018)). The paper (Hard et al., 2020) proposes
a new augmentation technique to reduce false reject rates and addresses algorithmic constraints in
FL-KWS training to label examples with no visibility. However, the scope of our proposed work
is different in the nature that it primarily addresses new label identification and similarity detection
in a zero-shot manner when heterogeneous label and model distributions exist across various FL
iterations and users. To the best of our knowledge, none of the papers discuss new label identification
in FL settings with statistical heterogeneities for audio classification.

Scientific contributions: (1) A framework with zero-shot learning mechanism by synthesizing
Anonymized Data Impressions from class similarity matrices to identify new classes for keyword
spotting and urban sound detection in on-device FL settings. (2) Provide two scenarios for label
acquisition — when class label is reported by user, and when class label is not, and propose unsu-
pervised clustering to identify/ differentiate newly reported classes. (3) Handling statistical hetero-
geneities such as heterogeneous distributions in labels/data/models across devices and FL iterations.

2 OUR APPROACH

In this section, we discuss about the problem formulation of new classes and heterogeneities in FL,
and our proposed framework (Algorithm [I)). The overall architecture is given in Appendix [A]

2.1 PROBLEM FORMULATION:

We assume the following scenario in federated learning. Suppose there are M nodes (devices) in the
FL network, holding data with distinct private local data D; = {9:Z i Yi, j} where ¢ is FL iteration
and j is the user index. Each node consists of public data Dy = {z¢, yo }. The public data is assumed
to be present across the global and all local users as discussed in (Li & Wangl |2019)) to handle the
various statistical (model) heterogeneities which is a common phenomena in FL. The overall label-
set of public dataset is Y = {yg}, which are the unique labels of overall label-set. We re-purpose
this public dataset as test set and do not expose it to local models during FL training iterations, but
expose only during testing for consistency. Our work’s main contribution is to propose a framework
to identify new labels across different users without transferring private data in FL setting. We also
assume each user can stream data with new labels at any iteration which does not belong to public
label-set Y, i.e. y; ; ¢ Y. In other words, the global user has no idea of these new labels.

2.2 ANONYMIZED DATA IMPRESSIONS

The main challenge/objective is to identify new classes across different users in FL heterogeneous
settings without the knowledge of local user data. This necessitates us to construct anonymized data
without transferring raw sensitive data, and identify new class similarities on the anonymized data.
We motivate our framework from the creation of Data Impressions (DI) using zero-shot learning
as proposed in (Nayak et al.l 2019) to compute Anonymized Data Impressions. Assume a model
M with input X and output y, where X € RM*N s the set of features and y € R™. Now, the
anonymized feature set X which has same properties of X can be synthesized in two steps:

(a) Sample Softmax Values: The first step is to sample the softmax values from the Dirichlet
distribution (Minkal, 2000). The Class Similarity Matrix (CSM) is created which contains important
information on how similar the classes are to each other. If the classes are similar, we expect the
softmax values are concentrated over these labels. CSM is obtained by considering the weights of
the model’s last layer. Typically, any classification model has the final layer as fully-connected layer
with a softmax non-linearity. If the classes are similar, we find similar weights between connections
of penultimate layer to the nodes of the classes (Nayak et al.,[2019). The Class Similarity Matrix is
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Algorithm 1 Our Proposed Framework

Input: Public Dataset Dy{xo, yo }, Private Datasets Dfn, Total users M, Total iterations I, La-
belSet [,,, for each user, Overall Public LabelSet Y
Output: Trained Model scores fé
Initialize fg = 0 (Global Model Scores)
for;: =1to I do
for m =1to M do
Build: Model D;,, and predict fp: (x0)
Local Update:
Choice 1: New classes are not reported
fpi (z0) = fE (b + afp: (zo), where fL (k) are global scores of I,,, with m'™ user,

_ len(D;,)
— len(Do)

Choice 2: New classes are reported
Train a new model with Dy and D}, (new data) together, and send weights of the last layer

(Wi ) to global user.
end for
Global Update:
Choice 1: No user reports new classes
Update label wise

‘ M
fgl = Z Bm fpi (w0), where

m=1

. 1 If labels are unique

) ace( fpi+i(wo)) if labels are not unique

where acc(fpi+1(29)) is the accuracy metric, defined by the ratio of correctly classified sam-
ples to total samples for a given local model.

Choice 2: Any user reports new classes 4

Create Data Impressions (DI) for each user m with weights W?_ (Section . Average DI of

all users with new classes, X' = Y meMs X¢ ., where Mg, is set of users with new label k.
k

Perform k-medoids clustering on X across Mg, . Number of clusters = Number of new labels
(ZHEUJ)'

Update public dataset with new DI (X?), Dy,ep = Do | X, add lyyeqp t0 I, and Y.
end for

constructed as,

T
W, W,
C(i,j) = s __J
where w; is the vector of weights connecting the previous layer nodes to the class node i. C €
REXK is the Class Similarity Matrix for & classes. We then sample the softmax values as,

Softmax = Dir(K,C') 2)

where C' is concentration parameter which controls the spread of softmax values over class labels.

(D

[willl[w;]]

(b) Creating Anonymized Data Impressions: Let Y* = [y}, y& .- y%] € RE*N be the N
softmax vectors corresponding to class k, sampled from Dirichlet distribution from previous step.
Once we obtain the softmax values, we compute the synthesized data features (Data Impressions)
by solving the following optimization problem using model M and sampled softmax values Y*,

X = arg m)anCE(y;,C, M(x)) 3)

To solve this optimization problem, we initialize the input x to be random input and iterate until
cross-entropy loss (Lo g) minimization. This process is repeated for all K categories. In this way,
anonymized data impressions are created for each class without the visibility of original input data.
We use the TensorFlow framework (Abadi et al.,2016) for all our experiments.
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Table 1: Model Architectures (filters in each layer), Labels and Audio frames per FL iteration across
user devices for both datasets. Note the disparate model architectures and labels across users.

User 1 User 2 User 3 Global User
2-Layer CNN 3-Layer CNN 3-Layer Depth-Separable CNN
Architecture (16, 32) (16, 16, 32) (16, 16, 32) -
Softmax Activation ReLU Activation ReLU Activation
A N Yes, No, Up, Down, Left, Right,
Keywords {Yes, No, Up, Down} {Up, Down, Left, Right} {Left, Right, On, Off} { Left, lgight‘ On, Off} €
Keyword Frames {200-300, 200-300, {200-300, 200-300, {200-300, 200-300, {3008} = 2400
per iteration 200-300, 200-300} 200-300, 200-300} 200-300, 200-300} B
Sound: {air conditioner, car horn,  {children playing, dog bark, {drilling, engine idling, {air conditioner, car horn, children playing,
Sounds children playing} drilling} gun shot, jackhammer} dog bark, drilling, engine idling, gun shot, jackhammer }
Sound Frames 4, 5, 4050, 40-50} {40-50, 40-50, 40-50} {40-50, 40-50, {508} =400

per iteration 40-50, 40-50}

2.3 PROPOSED FRAMEWORK

There are three steps in our proposed FL framework (Algorithm|T]).
(a) Build: Each local user creates their own model with their local private data for a specific iteration.

(b) Local Update: In this step, if new classes are not reported, we perform simple weighted a-
update (Gudur et al.l [2020), where o governs the contributions of new and old models across FL.
iterations. If new classes are reported, we train the new class data along with public dataset, and
send the new model weights to global user.

(c) Global update: In this step, if no user reports new classes, we perform label-based averaging
using the parameter [, which governs weightage of overlapping labels using corresponding test
accuracies. If user reports new classes, we create Anonymized Data Impressions (DI) for new classes
followed by unsupervised clustering using k-medoids with motivations from (Shuyang et al., [2017)
(Algorithm [I| Choice 2).

Typically, statistical heterogeneities are widely observed in practical FL settings, hence Choice 1
handles heterogeneities in local and global update steps (Gudur & Perepu, 2021}, while Choice 2
handles new classes in our proposed framework.

3 EXPERIMENTS AND RESULTS

We simulate our experiments using Raspberry Pi 2 as our user device with Google Speech Com-
mands (GKWS) (Warden, [2018) and UrbanSound8K (US8K) (Salamon et al.,|2014) datasets (Ap-
pendix [B) across different FL iterations/commumnication rounds using our proposed framework.

Public Dataset: We create a Public Dataset (Dg) with 2400 audio frames for GKWS (8 keywords
with 300 each), and 400 audio frames for US8K (8 sounds with 50 sounds) as shown in Figure [1}
Dy is visible to both global and local users in each FL iteration, and is updated with data synthesized
for unseen/new classes only —Anonymized Data Impressions.

We initially consider eight labels with the initial Public Dataset in both datasets before streaming
new classes (Table [T). We simulate two scenarios for testing our zero-shot framework - 1) new
classes only (homogeneous) with limited users and FL iterations (3 users and 10 iterations) for ef-
fective analysis of results, 2) new classes with statistical heterogeneities in both labels and models
as performed in |Gudur & Perepul (2021), with more users and FL iterations (10 users and 30 itera-
tions) for effective convergence. This exhibits near-real-time statistical heterogeneities as shown in
Appendix [C] Table[3]

New Classes: We introduce two new/unseen labels {Stop, Go} for GKWS and {Siren, Street music}
for US8K across four FL iterations and two users. In the homogeneous case, for GKWS, we induce
400 samples each with Stop class in iteration 4 for both User 1 and User 2, and 500 samples each
with Stop in User 1 iteration 8 and Go class in User 2 iteration 8. Similarly, we induce 50 samples
each with Siren class in iteration 4 for both User 1 and User 2, and 50 samples each with Siren in
User 1 iteration 8 and Street music in User 2 iteration 8. This is the FL scenario with new classes
without any heterogeneities. We also discuss similar FL scenarios with statistical heterogeneities.

(a) Label Heterogeneities: In every FL iteration, we also consider a random number of audio
frames generated between 200-300 samples per label for GKWS, while 40-50 samples per label for
USS8K. We split these labels across three users such that labels can either be unique or overlapping
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across users. We also simulate non-IIDness across FL iterations with disparities in both labels and
distributions in data (statistical heterogeneities).

(b) Model Heterogeneities: We consider the three model architectures as shown in Table [I] mo-
tivated from (Zhang et al., 2017} |Chollet| [2017), and also change model architectures, filters and
activation functions over FL iterations in addition to label heterogeneities with new classes (Ap-
pendix [C| Table[3)). The FL user iterations for such heterogeneities were chosen at random.

3.1 DISCUSSION ON RESULTS
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Figure 1: Local-Global update accuracies across 10 users and 30 FL iterations for both datasets with
new classes and heterogeneities.

Table 2: Final local-global update accuracies (%) with new classes across users and FL iterations.

(a) 3 users, 10 FL iterations without heterogeneities. (b) 10 users, 30 FL iterations with heterogeneities.
GKWS USSK Update GKWS USSK
User Local Global Increase Local Global Increase
User I 89.684 93.166 3482 76526 80214  3.688 Local 92.5 78.24
User2 91.888 9528 3391 75272 77.944  2.672 Global 96.541  82.498
User3 91517 94727 3211  77.61 81.838  4.228
Average 9103 94391 3361 76469 80 3.529 Increase 4.041 4.258

From Table[2a] we can observe that there is an accuracy increase in FL scenario with just new classes
(without heterogeneities) in corresponding global updates for all three users than the respective local
update accuracies for both datasets in spite of new classes streaming in. The average local-global
accuracy increase across all 10 FL iterations and 3 users is ~3.361% and ~3.529% respectively for
GKWS and US8K. Similarly, we can also observe that with our proposed framework, the final global
accuracies (with convergence after all FL iterations) even with new classes and heterogeneities are
96.541% and 82.498% (Table which are much higher than their respective local update accu-
racies. The corresponding local-global update accuracies across 30 iterations are shown in Figure
[I] The class similarity matrix of different classes for GKWS is showcased in Appendix [D]Figure 3}
which elucidates the misclassifications. We can also infer that the clusters effectively formed with
k-medoids are equal to number of new classes, which are visualized using Principal Component
Analysis (PCA) in two-dimensions. The new classes can either be different or same across user
devices (Appendix [E| Figure [, and these classes are correctly mapped to the respective end-user
devices. The new labels are then finally added to the overall label set while the corresponding aver-
aged data impressions are added to the public dataset. Further, Raspberry Pi 2 performance metrics
are observed in Appendix |F, showcasing the effectiveness of our proposed FL framework.

4 CONCLUSION

This paper presents a novel framework for handling new labels in a federated learning setting. We
propose a zero-shot learning framework by synthesizing Anonymized Data Impressions from Class
Similarity matrices to learn new classes across different user devices. We also account for hetero-
geneities in labels and models across different communication rounds, and systematically analyze
the results for two widely used audio classification applications — keyword spotting and urban sound
classification. We further demonstrate the effectiveness and scalability of our proposed FL frame-
work by simulating our experiments on-device using a Raspberry Pi 2.
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A APPENDIX: OVERALL ARCHITECTURE

The overall architecture of our proposed framework of new classes identification in a zero-shot man-
ner in FL settings with heterogeneities, along with existing FL scenarios with only heterogeneities
(Gudur et al.| [2020) is elucidated in Figure m
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Figure 2: Overall Architecture of FL with existing classes and proposed framework with new classes.
Each local device consists of heterogeneous sets of labels and models, and they interact with the
global model (cloud/server). When new labels stream in the devices, our proposed zero-shot FL.
framework in Figure [2b]is triggered, else the conventional FL setting in Figure [2ais triggered. The
updated consensus is finally distributed across local models and the process continues.

B APPENDIX: DATASETS AND DATASET PREPROCESSING

Google Speech Commands (GKWS) Warden| (2018)) consists of audio clips of one second and one
keyword each by thousands of different people. We choose the keywords: Yes, No, Up, Down, Left,
Right, On, Off, Stop and Go, and perform regular Mel-frequency Cepstral Coefficients (MFCC)
extraction as performed in (Zhang et al.l 2017)), with sampling frequency of 14400 HZ. The MFCC
data is divided into 20 windows and each window is of size 50 ms.
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UrbanSound8K (US8K) (Salamon et al., [2014), an environmental sound dataset, consists of 10
classes of sound events: air conditioner, car horn, children playing, dog bark, drilling, engine
idling, gun shot, jackhammer, siren and street music. All the sounds in the dataset are urban field-
recordings. We perform similar preprocessing using MFCC as previously performed in GKWS for
USS8K as well.

C APPENDIX: MODEL HETEROGENEITIES ACROSS ITERATIONS

The model and label heterogeneities across and within different FL iterations are observed in Table
[l Changing model architectures, filters and activation functions over FL iterations exhibit near-real-
time model heterogeneities. In addition, we also add label heterogeneities with new classes across
different FL user iterations.

Table 3: Details of heterogeneities - model architectures (filters) and new classes changing across
FL iterations and users for both datasets.

Iteration New Model New Class
. 3-Layer ANN (16, 16, 32)
User 1 Iteration 6 ReLU Activation -

. 1-Layer CNN (16)
User 1 Iteration 8 Softmax Activation )

3-Layer CNN (16, 16, 32)

User 2 Iteration 4, 6 S L0 Stop/Siren
oftmax activation
User 3 Iteration 5 4-Layer CNN (8’. 16’. 16,32)
Softmax activation
User 4 Iteration 3, 7 - Go/Street Music
User 6 Iteration 5, 3 - Stop/Siren
User 9 Iteration 4 - Stop/Siren

D APPENDIX: CLASS SIMILARITY MATRIX

The Class Similarity Matrix calculated from Section [2.2]for the 10 classes of Google Speech Com-
mands Dataset (GKWS) is showcased in Figure 3]

| -10
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0 1 2 3 4 5 6 7 8 é

Figure 3: Class Similarity Matrix for Google Speech Commands Dataset.
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E APPENDIX: USER REPORTS ON CLUSTERING OF NEW CLASSES

k-medoids unsupervised clustering is performed, and the PCA results (with 2 dimensions) of using
new classes which are different across user devices, and also same across user devices are observed
in Figure 4] The new classes considered in our experiments are {Stop and Go} for Google Speech
Commands dataset, and {Siren and Street music} for UrbanSound8K dataset. The number of clus-
ters returned are the new classes which are correctly mapped to respective end-user devices, and the
new labels are added to the overall label set and corresponding data impressions are added to the
public dataset. This process is repeated for creating further anonymized data impressions.
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Figure 4: PCA (with 2 dimensions) of k-medoids unsupervised clustering with new classes, with
same and different classes for both datasets.

F APPENDIX: ON-DEVICE PERFORMANCE

Raspberry Pi 2 (900MHz quad-core ARM Cortex-A7 CPU with 1GB RAM) is used for evaluat-
ing our proposed FL framework as it has similar hardware and software (HW/SW) specifications
to predominant contemporary IoT/mobile devices. The computation times are identical for both
datasets due to similar preprocessing. The size of the models used are also 520 kB, 350 kB, 270 kB
respectively for user architectures mentioned in Table [T}

Table 4: Computation Times with Raspberry Pi 2

Process Time
Training time per epoch
. g time per epo ~1.2 sec
in an FL iteration (7)
Inference time ~11 ms
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