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ABSTRACT

Leveraging specialized parallel hardware, such as GPUs, to conduct DNN train-
ing/inference significantly reduces time. However, data in these platforms is visi-
ble to any party, which, in certain circumstances, raises great concerns of data mis-
use. Trusted execution environments (TEEs) protect data privacy by performing
training/inference in a secure environment, but at the cost of serious performance
degradation. To bridge the gap between privacy and computing performance, we
propose an asymmetric model-splitting framework, AsymmetricML, to (1) exploit
computing power in specialized parallel hardware; and (2) preserve data privacy
in TEEs during DNN training/inference. AsymmetricML asymmetrically splits
a DNN model into two parts: the first part features most sensitive data informa-
tion but less computation; while most computation is performed in the second
part. Evaluations on typical models (VGG, ResNet) shows the framework deliv-
ers 5.9× speedup in model inference, and 5.4× in model training compared with
TEE-only executions.

1 INTRODUCTION

Deep Neural Networks (DNNs) no doubt are emerging as an essential building block in various
applications, such as computer vision (Simonyan & Zisserman, 2014; He et al., 2016; Zhu et al.,
2017), natural language processing (Devlin et al., 2018). Efficiently training an large-scale DNN
model usually requires (1) sufficient training dataset; (2) high-end parallel hardware, which are
usually met in high-end distributed systems. In distributed or cloud-based applications, DNN train-
ing/inference is outsourced to remote computing servers, which requires data to be shared among
untrusted platforms. This practice brings serious concerns that data, especially if it contains sensitive
information, might be leaked to public and misused.

This poses a new level of challenge when training DNN models: keep computing services unaware
of what input data is when using the services to speed up model training/inference. Current meth-
ods such as differential privacy (Abadi et al., 2016) and federated learning (Konečnỳ et al., 2015),
though to some extent protect privacy, do not directly attack this issue. Trusted execution environ-
ments (TEEs), like Intel Software Guard Extensions (SGX) (Costan & Devadas, 2016) and Arm
TrustZone (Alves, 2004), is a practical platform which can directly addresses this challenge in hard-
ware. By conducting all computation in TEEs, the server can effectively protect data privacy from
malicious attackers. However, computing performance and training/inference speed is severely af-
fected. Tramer & Boneh (2018) though proposes a framework to preserve privacy using Intel SGX
platform and GPUs during inference, private DNN training is still an open problem.

To efficiently perform private DNN training and inference in a heterogeneous system with high-
end parallel hardware and security-enabled processors, this paper proposes a novel framework,
asymmetricML, to asymmetrically split DNN models into two parts. The first part keeps most data
information while only involves a small amount of computation; and the second part holds most
computation with little information potentially leaked. In this way, the DNN model can be executed
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by combining security-enabled processors and untrusted high-end parallel hardware, in which the
TEE protects privacy, while high-end hardware guarantees computing performance.

Our contributions are detailed in the following aspects:

• A model-splitting algorithm is proposed to decompose a model into two parts which effec-
tively decouples sensitive information from computation;

• To measure performance, the AsymmetricML framework is implemented in a heteroge-
neous system with security-enable CPUs and high-end GPUs which supports various DNN
models.

Experiments on VGG16/19 and ResNet variants show this framework delivers 5.9× speedup in
model inference, and 5.4× in model training than in TEE-only executions.

2 ASYMMETRIC MODEL-SPLITTING ALGORITHM

For a convolutional layer with input X ∈ Rb×ci×Hi×Wi and kernel W ∈ Rco×ci×k×k, each output
channel is calculated as Yib,ic,:,: = Conv(Xib,:,:,:,Wic,:,:,:) =

∑ci
j=1 Xib,j,:,: ~ Wic,j,:,: (bias is

omitted), where b is batch size, ci, co is the total number of input/output channels, andHi,Wi denotes
image sizes. To simplify notations, the slice of tensors such as Xib,:,:,: is reduced to Xib .

The central part in the model-splitting algorithm is to break down Conv into Trusted and Untrusted
parts, Yib,ic = ConvT(X(T)

ib
,Wic) + ConvU(X(U)

ib
,Wic), with ConvT performed in TEEs, and ConvU

offloaded onto GPUs. Furthermore, this decomposition is proceeded in an asymmetric manner, in
which information in X(T)

ib
is much more than in X(U)

ib
, while rank of X(T)

ib
is much smaller than rank

of X(U)
ib

. Hence, the trusted platform keeps most sensitive information from potential attackers with
manageable computation overhead (explained in Sec 2.1). On the other hand, most computation is
offloaded onto untrusted platforms to accelerate both inference and training.

2.1 SVD-BASED MODEL-SPLITTING ALGORITHM

The cornerstone in the algorithm is to find an asymmetric method to decompose input X, which is
achievable due to high correlation among input channels in X.

To begin with, each Xib is flattened into a matrix Xib ∈ Rci×HiWi . By applying SVD, we get
transformed “input channels”, Vib , and corresponding singular values in Sib , as shown in Eq (1).

Xib = Uib · Sib · V T
ib
. (1)

By reshaping each column j
′

in Vib back to a matrix X
′

ib,j
′ ∈ RHi×Wi , Xib,ic is rewritten as:

Xib,ic =

ci∑
j′=1

σib,j′ · uib,j
′ (ic) · X

′

ib,j
′ ≡

ci∑
j′=1

aib,ic,j′ · X
′

ib,j
′ , (2)

where σj′ = Sib(j
′
, j
′
), and uib,j

′ (ic) = Uib(j
′
, ic) and aib,ic,j′ is the combined coefficient.

Then, according to the sigular value of each channel, Xib,ic can be further split as in Eq (3).

Xib,ic ≡ X(T)
ib,ic

+ X(U)
ib,ic
≡

r∑
j′=1

aib,ic,j′ · X
′

ib,j
′ +

ci∑
j′=r+1

aib,ic,j′ · X
′

ib,j
′ , (3)

where r � ci denotes the number of most “principle channels” stored in X(T).

With the decomposed input, the forward and backward operation in a convolutional layer can be
accordingly decomposed. During forward, convolution operation can be decomposed as:

in trusted platform,

Y(T)
ib,ic

=

ci∑
j=1

X(T)
ib,j

~ Wic,j =

r∑
j′=1

X
′

ib,j
′ ~

ci∑
j=1

aib,j,j′Wic,j =

r∑
j′=1

X
′

ib,j
′ ~ W

′

ib,ic,j
′ ; (4a)
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in untrusted platform,

Y(U)
ib,ic

=

ci∑
j=1

X(U)
ib,j

~ Wic,j . (4b)

For backpropagation, given ∂L
∂Y obtained from previous layer, ∂L

∂X can be calculated as:

∂L

∂Xib,ic

=

co∑
j=1

∂L

∂Yib,j
~ Wj,ic rot180◦ (5)

Since computing ∂L
∂X usually will not reveal information in X , it can be fully offloaded to untrusted

platform.

On the other hand, computing ∂L
∂W involves both private and public data:

∂L

∂Wico ,ici

=

b∑
ib=1

X(T)
ib,ici

~
∂L

∂Yib,ico

+

b∑
ib=1

X(U)
ib,ici

~
∂L

∂Yib,ico

=

b∑
ib=1

(

r∑
j′=1

aib,ici ,j
′ (X

′

ib,j
′ ~

∂L

∂Yib,ico

)) + X(U)
ib,ici

~
∂L

∂Yib,ico

(6)

The first part in Eq (6) is done in trusted platform, in which X
′

ib,j
′ ~ ∂L

∂Yib,ico
for j

′
= 1, · · · , r is pre-

computed in TEEs; then X(T)
ib,ici

~ ∂L
∂Yib,ico

is obtained by multiplying with the coefficient aib,ici ,j
′ .

Therefore computation complexity in TEEs is less than r
ci

in GPUs.

2.2 LIGHT-WEIGHT SVD APPROXIMATION

One issue is that “principle channels” change after non-linear operations, which needs to be re-
calculated from output activations. It is, however, unwise to perform exact SVD in TEEs. In this
section, we present a light-weight SVD approximation to obtain “principle channels”.

From optimization perspective, SVD can be viewed as finding vector u(i) and v(i) to minimize∥∥∥X(i−1) − u(i) · v(i)T
∥∥∥, in which X(i−1) is the remaining X with i − 1 most principle components

extracted. SVD requires
{
u(i)

}
and

{
v(i)
}

to be orthogonal. If relaxing this constraint, the opti-
mization for calculating the r principle components can be formulated as Eq (7).

X(T) = argmin
X(T)

∥∥∥X− X(T)
∥∥∥ , rank(X(T)) ≤ r (7a)

X(U) = X− X(T) (7b)

Using alternating optimization(Bezdek & Hathaway, 2003), each component i in X(T) can be ob-
tained as in Alg 1. With initial value from before-nonlinear operations, only 1 ∼ 2 iterations are
sufficient to reach optimal

{
u(i)

}
and

{
v(i)
}

. The computation complexity just increases linearly
with r.

2.3 DESIGN FLOW

Figure 1 shows a complete procedure when decomposing a model. Each convolutional layer is
decomposed and distributed to TEEs (Private flow) and GPUs (Public flow), after which outputs
Y(T),Y(U) are merged in TEEs. When a convolutional layers is done, a non-linear is applied, and a
light-weight SVD is then performed to prepared inputs for the next convolutional layer. At any time,
only data in GPUs is visible to public. Data in ConvT and merged outputs Y are always secured in
TEEs.
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Algorithm 1 Light-weight SVD Approximation

Input: r,X,
{
u(0),v(0) | i = 1, · · · , r

}
1: Initialize X(T) = �
2: for i in 1, · · · , r do
3: for j in 1, · · · ,max iter do . max iter ≤ 2

4: u
(i)
j =

X·v(i)
j−1∥∥∥v(i)

j−1

∥∥∥2 , v
(i)
j =

XT ·u(i)
j∥∥∥u(i)

j

∥∥∥2 . Alternating optimization

5: X = X− u
(i)
j · v

(i)
j

T
, X(T) = X(T) ∪

{
u
(i)
j ,v

(i)
j

}
6: X(U) = X

Figure 1: A complete procedure for decomposing a model

3 EXPERIMENTS

In this section, we evaluate the asymmetric model-splitting algorithm in a hybrid system with Intel
SGX (Costan & Devadas, 2016) enabled CPUs and NVIDIA GPUs. NVIDIA QUADRO RTX 5000
GPUs are used as an untrusted platform, while SGX-enabled CPUs as a trusted platform. ImageNet
(Deng et al., 2009) is used to measure training/inference performance.

Fig 2 shows training time for different methods. During experiments, the number of “principle chan-
nels” r in each convolutional layer is chosen to keep ≥ 97% energy of inputs in TEEs. Comparing
with the SGX-only method (baseline2), the asymmetric DNN framework (Asym1) achieves 5.2×
speedup on VGG16/VGG19, and up to 4× speedup on ResNet variants. If further relaxing privacy
constraint (Asym2, 80% energy in TEEs), more performance gains can be squeezed out. Comparing
with the GPU-only method (baseline1), the asymmetric DNN framework shows around 20× slow-
down. The main bottleneck is not computation cost in SGX, instead, it lies on the context switching
between SGX and GPU, along with necessary data movement (parameters/activations/gradients).
Comparing Asym1 with Asym2, even though computations in Asym1 is almost as twice as in
Asym2, actual training time using Asym1 is very close to the one using Asym2.
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Figure 2: Training performance on ImageNet.Bar plot shows slowdowns compared to GPU-only
(baseline1) execution; red dotted lines are the corresponding running time with batch size 32
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4 CONCLUSION

In this paper, we propose an asymmetric decomposition framework to split DNN models and dis-
tribute models onto trusted platforms and untrusted platforms. The trusted platform is aimed to
preserve most information in input data with manageable computation cost; the untrusted platform
performs most computation. The asymmetric framework makes the best use of each platform in
a hybrid system. Experiments show that the asymmetric decomposition framework achieves up to
5.9× speedup in model inference and 5.4× in training.
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Figure 3: Asymmetric DNN implementation

A APPENDIX

A.1 ASYMMETRIC DNN IMPLEMENTATION

Due to the fact that there is no efficient framework supported in SGX, a new framework is developed
in this paper to automatically split DNN models and distribute computation into SGX enclaves
and GPUs. The asymmetric DNN framework in this paper takes input from a PyTorch (Paszke
et al., 2019) model definition, splits it into two parts and outsources to SGX enclaves and GPUs
respectively. Part of model in SGX is executed using a dedicated DNN library, while the other
part is executed using PyTorch, as shown in Fig 3. The DNN library in SGX enclaves currently
supports forward (FWD) and backward (BWD) operations on convolution, ReLU, and Pooling. It
also contains a light SVD op. Pooling can be further fused with a ReLU op to reduce memory access
between SGX enclaves and GPUs, similar as (Tramer & Boneh, 2018).

During runtime, two running contexts are created: PyTorch and SGX context. PyTorch works as
a coordinator to distribute computation, activate SGX context and update model parameters. For
convolutional layers, GPUs and SGX enclaves work in parallel; for other operations, sequential
execution is required.

A.2 INFERENCE PERFORMANCE
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Figure 4: Inference performance on ImageNet. Bar plot shows slowdowns compared to GPU-only
(baseline1) execution; red dotted lines are the corresponding running time with batch size 32.
We present inference results and compare the performance with Slalom (Tramer & Boneh, 2018).
As shown in Fig 4, performance (slowdowns/running time) for VGG16/VGG19 and ResNet18/34
on ImageNet using different methods is measured. Baseline 1 is GPU-only execution; while base-
line 2 is SGX-only execution in which the whole model is processed in SGX Enclave. The asym-
metric DNN framework achieves 5.2×/5.9× faster than SGX-only execution on VGG16/VGG19,
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and 4.7×/5.2× faster on ResNet18/ResNet34. Due to additional partial convolution processed in
SGX, inference in our asymmetric DNN framework (Asym1/Asym2) is slower than Slalom, which
is reasonable since Slalom only privatizes non-linear operations. However, due to the channel-wise
low-rank characteristic in activations, the asymmetric DNN framework though compute partial con-
volutions, does not sacrifice too much performance.

Furthermore, in some scenarios, privacy can be to some extent compromised, in which small part of
the information is allowed to be leaked without causing significant damage. In the asymmetric DNN
framework, we achieve this goal by parameterizing information leakage: Asym1 in Fig 4 is aimed
to keep almost all information in SGX, which incurs more computation cost. Asym2, on the other
hand, only keeps half of the principle channels as in Asym1, by which around 20% information is
exposed, but with the reward of 10% speedup. Another observations is as models go deep as VGG19
and ResNet34, relative performance using the asymmetric DNN framework decreases. This is due
to the fact that more additional layers in SGX incurs more extra cost of calling SGX context, data
movement between SGX Enclaves and GPUs.
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