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ABSTRACT

Making evidence based decisions requires data. However for real-world applica-
tions, the privacy of data is critical. Using synthetic data which reflects certain
statistical properties of the original data preserves the privacy of the original data.
To this end, prior works utilize differentially private data release mechanisms to
provide formal privacy guarantees. However, such mechanisms have unacceptable
privacy vs. utility trade-offs. We propose incorporating causal information into
the training process to favorably modify the aforementioned trade-off. We theo-
retically prove that generative models trained with additional causal knowledge
provide stronger differential privacy guarantees. Empirically, we evaluate our
solution comparing different models based on variational auto-encoders (VAEs),
and show that causal information improves resilience to membership inference,
with improvements in downstream utility.

1 INTRODUCTION

Automating AI-based solutions and making evidence-based decisions both require data analyses.
However, in many situations, the data is very sensitive and cannot be published directly. Synthetic
data generation, which captures certain statistical properties of the original data, is useful to resolve
these issues. However, naive data creation may not work; when improperly constructed, the synthetic
data can leak information about its sensitive counterpart (from which it was constructed). Several
membership and attribute inference attacks have been shown (Mukherjee et al., 2019; Stadler et al.,
2020; Zhang et al., 2020b), and eliminate any privacy advantage provided by releasing synthetic data.
Therefore, efficient privacy-preserving synthetic data generation methods are needed.

The de-facto mechanism used for providing privacy in synthetic data release is that of differential
privacy (Dwork et al., 2006). The privacy vs. utility trade-off inherent with these solutions is further
exacerbated in tabular data because of the correlations between different records, and among different
attributes within a record. In such settings, the amount of noise required to provide meaningful privacy
guarantees often destroys any discernible signal. Apart from assumptions made on the independence
of records and attributes, prior works make numerous assumptions about the nature of usage of the
synthetic dataset (Xiao et al., 2010; Hardt et al., 2010; Cormode et al., 2019; Dwork et al., 2009).
This results in heuristics that do not easily port to different settings.

To this end, we propose a mechanism to create synthetic data that is agnostic to the downstream
task. Similar to prior work (Jordon et al., 2018), our solution involves training a generative model to
provide formal differential privacy guarantees. Unlike prior solutions, however, we encode domain
knowledge into the generation process to enable better utility. In particular, to induce favorable
privacy vs. utility trade-offs, our main contribution involves incorporating causal information while
training synthetic data generative models. We formally prove that generative models trained with
causal knowledge of the specific dataset are more private than their non-causal counterparts.

Based on our theoretical results, we present a novel practical solution, utilizing advances in deep
generative models, in particular, variations autoencoder (VAE) based models (Kingma & Welling,
2013; Rezende et al., 2014). These models combine the advantage of both deep learning and proba-
bilistic modeling, making them scale to large datasets, flexible to fit complex data in a probabilistic
manner, and can be used for data generation (Ma et al., 2019; 2020a). Thus, in designing our solution,
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we assume structured causal graphs (SCGs) as prior knowledge and train causally consistent VAEs.
Additionally, we train causally consistent, differentially-private VAEs to understand the benefit of
causality in conjunction to that of differential privacy.

We experimentally evaluate our solution on two real world applications: (a) a medical dataset
regarding neuropathetic pain (Tu et al., 2019b), and (b) a student response dataset from a real-world
online education platform (Wang et al., 2020). Based on causal knowledge provided by a domain
expert, we show that models that are causally consistent are more stable by design. In the absence of
differentially-private noise, causal models elevate the baseline utility by 2.42 percentage points (PPs)
on average while non-causal models degrade it by 3.49 PPs.

With respect to privacy evaluation, prior works solely rely on the value of the privacy budget ε. We
take this one step further and empirically evaluate resilience to membership attacks (Appendix C).
Our experimental results demonstrate the positive impact of causality in inhibiting the membership
inference adversary’s advantage. Better still, we demonstrate that differentially-private models
that incorporate both complete or even partial causal information are more resilient to membership
inference adversaries than those with purely differential privacy with the exact same ε-DP guarantees.

In summary, the contributions of our work include:

1. A deeper understanding of the advantages of causality through a theoretical result that highlights
the privacy amplification induced by causal consistency (§ 2).

2. Empirical results demonstrating that causally constrained (and differentially private) models are
more utilitarian in downstream classification tasks (§ 3).

2 PRIVACY AMPLIFICATION THROUGH CAUSALITY

Problem Statement: We study the problem of private data release, where a data owner is in
possession of a sensitive dataset which they wish to release. Formally, we define a dataset D to be
the set {x1, · · ·xn} of n records, where each record x = (x1, · · · , xk) has k attributes. We refer to
n as the dataset size, and d as the dimensionality of the data. Each record x belongs to the universe
of records X . Our approach involves designing a procedure which takes in a sensitive dataset
Dp and outputs a synthetic dataset Ds which has some formal privacy guarantee and maintains
properties from original dataset for downstream decision-making tasks. Formally speaking, we wish
to design fθ : Z → X , where θ are the parameters of the method, and Z is some underlying latent
representation for inputs in X . In this section, we present our main result: causally consistent (or
causal) models are more private than their non-causal or associational counterparts. Our focus is on
generative models, but our analysis is applicable to both generative and discriminative contexts.

2.1 MAIN THEOREM

We begin by introducing notations and definitions needed for our proof. A mechanism M takes in as
input a dataset D and outputs a parameterized model fθ. The model output by the mechanism M
belongs to a hypothesis spaceH. To learn the model, we utilize empirical risk mechanism (ERM), and
assume a loss function L that is Lipschitz continuous and strongly convex. LD denotes the average
loss calculated over the dataset D (i.e., LD = 1

n

∑
x∈D Lx). Lx denotes the loss being calculated

over sample x i.e., Lx(fθ) = Lx(fθ(x)). For generative models, the loss should reflect how well
the model fits the data while for probabilistic models; if we use variational inference, we can not
minimize the KL divergence exactly, but one instead minimizes a function that is equal to it up to a
constant, which is the evidence lower bound (ELBO).

Data Generating Process: Define the DGP < f∗, η > as: f∗ = limn→∞ argminLD(fθ). Es-
sentially f? can be thought of as the infinite data limit of the ERM learner and can be viewed
as the ground truth. In a causal setting, the DGP for a variable X is defined as f∗(X) =
(f∗1 (Pa(X1)) + ηi, · · · , f∗n(Pa(Xn)) + ηn) where ηi are mutually, independently chosen noise
and Pa(Xi) are the parents of Xi in the SCG.

Loss-maximizing (LM) Adversary: Given a model fθ and a loss function L, an LM adversary
chooses a point x′ (to be added to the dataset D to obtain D′) as x′ = argmaxx Lx(fθ).
Theorem 1. Given a dataset D of size n, and a strongly convex and Lipschitz continuous loss
function L, assume we train two models in a differentially private manner: a causal (generative)
model fθc , and an associational (generative) model fθa , such that they minimize L on D. Assume
that the class of hypothesesH is expressive enough such that the true causal function lies inH.
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1. Infinite sample case. As n→∞, the privacy budget of the causal model is lower than that of the
associational model i.e., εc ≤ εa.

2. Finite sample case. For finite n, assuming certain conditions on the associational models learnt,
the privacy budget of the causal model is lower than that of the associational model i.e., εc ≤ εa.

Proof Outline: The detailed proof is found in Appendix F. The main steps of our proof are:

1. We show that the maximum loss of a causal model is lower than or equal to maximum loss of the
corresponding associational model.

2. Using strong convexity and Lipschitz continuity of the loss function, we show how the difference
in loss corresponds to the sensitivity of the learning function.

3. Finally, knowledge of sensitivity directly helps determine the privacy budget ε.

We present a key idea behind step 1 of the proof of our main theorem. Assume an LM adversary and
a strongly-convex loss function L. Given a causal model fθc and an associational model fθa trained
on dataset D using ERM; the LM adversary selects two points: x′ and x′′. We wish to show that
the worst-case loss obtained on the causal ERM model Lx′(fθc) is lower than the worst-case loss
obtained on the associational ERM model Lx′′(fθa), or maxx Lx(fθc) ≤ maxx Lx(fθa)

We provide intuition for the equation given above in the infinite data case. The case of finite data
appears in Appendix F. The key idea is that in the causal model, an LM adversary is constrained by
the causal structure, but does not have these constraints in the associational setting.

In the infinite data case, Peters et al. (2017) demonstrate that, for causal models limn→∞ LD(fθc) =
limn→∞ argmaxLD(fθ) = f∗. In other words, in the causal setting an LM adversary is constrained
by the DGP f?. However, the same is not true for associational models (i.e., limn→∞ LD(fθa) 6= f∗).
In the causal world LM adversary is more constrained than in the associational world. Thus,
maxx Lx(fθc) = η ≤ maxx Lx(fθa)

Once this is established in the finite data regime as well, we will utilize specific properties of the
loss function to bound the sensitivity of the learned parameters θc and θa and use this information
to obtain bounds on εc (the privacy budget of the causal model) and εa (the privacy budget of the
associational model).

Why does causality provide any benefit? Any dataset can be thought of as data collected from
multiple distributions. In the case of causal models, we know the proper factorization of the joint
probability distribution, and any model we learn to fit these factorized distributions will be more
stable. Additionally, the model is well specified based on these factorizations. In the associational
case, the model is capable of learning any kind of relationship between different attributes, even those
that may not be stable. Due to the higher stability in the causal model, its (worst-case) loss on unseen
points (or points generated by the true DGP) is lower.

3 EVALUATION

Our experimental setup, datasets, and objectives are summarized in Appendices A and B. Thus far,
our discussion has focused om how (perfect) causal information can be used to theoretically minimize
the privacy budget. We design our evaluation with the goal to answer the following questions: Does
the synthetic data degrade downstream utility substantially? Is this particularly true in the causal
case where the privacy is amplified?

From our evaluation, we observe that the downstream utility is minimally affected by incorporating
causality into the training procedure. In some cases, causal information increases the utility (§ 3.1).

3.1 UTILITY EVALUATION

Downstream Classification: Table 1 shows the change in utility on different downstream tasks using
the generated synthetic data when trained with and without causality as well as differential privacy.
The negative values in the table indicate an improvement in utility. We only present the range of
absolute utility values when trained using the original data in the table and provide individual utility
for each classifier in Appendix I.

We observe an average performance degradation of 3.49 percentage points across all non-causal
models trained without differential privacy, and an average increase of 2.42 percentage point in their
causal counterparts. However, it is well understood that differentially private training induces a
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Dataset (Utility Range) DP Non Causal Causal

kernel svc logistic rf knn kernel svc logistic rf knn

EEDI (86-92%) X 6.83 7.11 6.82 6.54 5.36 -4.04 -0.22 -3.49 6.09 5.87
× 1.14 3.86 2.6 5.27 2.41 -6.83 -2.74 -6.13 -0.03 -1.96

Pain1000 (88-95%) X 9.56 6.34 2.48 5.86 2.03 -1.84 4.03 -1.27 2.22 -4.64
× 5.42 5.5 1.31 6.22 -0.924 -1.73 1.56 -3.16 2.11 -6.92

Pain5000 (92-98%) X 4.09 6.89 6.8 2.27 5.22 1.7 2.11 4.58 0.62 -0.82
× 3.53 5.93 5.68 0.48 4.07 -0.64 0.07 -0.24 -4.62 -5.13

Table 1: Downstream Utility Change: We report the utility change induced by synthetic data on downstream
classification tasks in comparison to the original data i.e., (original data utility - synthetic data utility). Negative
values indicate the percentage point improvement, while positive values indicate degradation. The performance
range of the classifiers we consider is reported in parentheses next to each dataset. Observe that (a) differentially
private training induces performance degradation in both causal and non-causal settings, and (b) performance
degradation in the causal setting is lower than that of the non-causal setting.
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Figure 1: Utility vs. Privacy: Observe that causal models always outperform their associational counterparts,
for the same reported value of ε.

privacy vs. utility trade-off, and consequently the utility suffers (compare rows with DP and without
DP). However, when causal information is incorporated into the generative model, we observe that the
utility degradation is less severe (compare pairs of cells with and without causal information). These
results suggest that causal information encoded into the generative process improves the privacy vs.
utility trade-off i.e., for the same ε-DP guarantees, the utility for causal models is better than their
non-causal counterparts.

3.2 PRIVACY VS. UTILITY

In Figure 1, we plot the utility (measured by the average accuracy across the 5 downstream prediction
tasks) for both causal and associational models, for varied values of ε (obtained by reducing the batch
size during training). Observe that for a fixed privacy budget, the causal models always have better
utility than their associational counterparts.

3.3 MEMBERSHIP INFERENCE TEASER

We evaluate the efficacy of our approach in providing resilience to membership inference in Ap-
pendix C. We summarize our key results below:

1. Knowledge of a complete causal graph with differential privacy consistently reduces the adver-
sary’s advantage across different feature extractors and classifiers i.e., provides better privacy
guarantees (§ C.1.1).

2. Even partial causal information reduces the advantage of the adversary when the model is trained
without DP and in majority cases with DP as well. As a surprising result, we observe the advantage
to slightly increase for specific feature extractors-dataset combination for a model trained with
causality and DP (§ C.1.2).

4 CONCLUSIONS

In this work, we propose a mechanism for private data release using VAEs trained with differential
privacy. Our theoretical results highlight how causal information encoded into the training procedure
can potentially amplify the privacy guarantee provided by differential privacy, without degrading
utility. Our results show how causal information enables advantageous privacy vs. utility trade-offs.
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APPENDIX

A CAUSAL DEEP GENERATIVE MODELS

As we aim to release a privacy-preserving synthetic dataset, we require a generative model for data
generation. Based on our theoretical analysis and considering the flexibility and computational effi-
ciency requirement in large-scale real-world applications, we use causally consistent deep generative
models. In particular, our solution is based on Variational Auto-Encoders (VAEs).

X

Z

(a) VAE

X2

X1 Z

(b) Causal Graph

X2

X1 Z

(c) Causal DGM

Figure 2: Exemplar case comparing our solution to VAE.

VAE Recap: In VAE Kingma & Welling (2013); Rezende et al. (2014), the data generation, pθ(x|z),
is realized by a deep neural network (and is hence parameterized by θ) known as the decoder. To
approximate the posterior of the latent variable pθ(z|x), VAEs use another neural network (the
encoder) with x as input to produce an approximation of the posterior qφ(z|x). VAEs are trained by
maximizing an evidence lower bound (ELBO), which is equivalent to minimizing the KL divergence
between qφ(z|x) and pθ(z|x) Jordan et al. (1999); Wainwright & Jordan (2008); Blei et al. (2017);
Zhang et al. (2018). Naive solution involving the use of VAE for data generation would concatenate
all variables as X , train the model, and generate data through sampling from the prior p(Z). To
train the model, we wish to minimize the KL divergence between the true posterior p(z|x) and the
approximated posterior qφ(z|x). This is achieved by maximizing the ELBO defined as:

ELBO = Eqφ(z|x))[log pθ(x|z)]−KL[qφ((z|x)||p(z)]

Causal Deep Generative Models: Now that we have established the elements required to build our
solution, we provide a brief overview. We wish to learn a differentially private generative model
of the form fθ(Z) = X . To this end, we wish to incorporate causal properties associated with the
distribution of inputs. VAEs are probabilistic graphical models, and provide a way to design the
data generation process for any joint probability distribution. Here, we propose to make the model
generative process consistent with the given causal relationship. Figure 2 provides an example of
how this is achieved. As an example, the original dataset contains variable X1 and X2 and the
causal relationship follows Figure 2 (b). In this case, X1 can be a medical treatment and X2 can
be a medical test, and Z is the patient health status which is not observed. Instead of using VAE
to generate the data, we design a generative model as shown in Figure 2 (c), where the solid line
shows the model p(x1, x2, z) = p(z)pθ1(x1|z)pθ2(x2|x1, z), and the dashed line shows the inference
network qφ(z|x1, x2). In this way, the model is consistent with the underlying causal graph. The
modeling principle is similar to that of CAMA Zhang et al. (2020a). However, CAMA only focuses
on prediction task and ignores all variables out of the Markov Blanket of the target. In our application,
we aim for data generation and need to consider the full causal graph. In this sense, our proposed
solution examples generalizes CAMA.

Why does causality provide any benefit? Any dataset can be thought of as data collected from
multiple distributions. In the case of causal models, we know the proper factorization of the joint
probability distribution, and any model we learn to fit these factorized distributions will be more
stable. Additionally, the model is well specified based on these factorizations. In the associational
case, the model is capable of learning any kind of relationship between different attributes, even
those that may not be stable. Due to the higher stability in the causal model, its (worst-case) loss on
unseen points (or points generated by the true DGP) is lower. As we show in our theorem in § 2.1,
this translates to lower sensitivity which results to better privacy.

Put another way, associational models may observe certain correlations (useful or spurious) in certain
points in the dataset and learn to fit to them. These models may consequently not learn from other
points in the dataset. However, this phenomenon will not happen in causal models.

8



Remark: In this work, we assume that the causal relationship is given. In practice, this can be
obtained from domain expert or using a careful chosen causal discovery algorithm Glymour et al.
(2019); Tu et al. (2019a); Spirtes et al. (2000).
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Model Dataset # Records k C ε

Causal
EEDI 2950 948 1.35 12.42Non Causal 1.07

Causal
Pain5000 5000 222 0.17 5.62Non Causal 0.33

Causal
Pain1000 1000 222 0.25 2.36Non Causal 0.41

Causal
Synthetic 1000 22 0.55 3.9Non Causal 0.65

Table 2: Salient features of our experimental setup. Parameters required for DP training are located in Ap-
pendix G.

B IMPLEMENTATION

We describe important features related to our implementation. Refer Appendix G for more details.

B.1 CODE & DATASETS

As part of our experiments, we utilize datasets from two real-world applications. The first one is the
EEDI dataset Wang et al. (2020) which is one of the largest real-world education data collected from
an online education platform. It contains answers by students (of various educational backgrounds)
for certain diagnostic questions. The second one is the neuropathic pain (Pain) diagnosis dataset
obtained from a causally grounded simulator Tu et al. (2019b). For this dataset, we consider two
variants: one with 1000 data records (or Pain1000), and another with 5000 data records (or
Pain5000). More salient features of each dataset is presented in Table 2. We choose these datasets
as they encompass diversity in their size, dimensionality k, and have some prior information on
causal structures (refer Appendix H for more details). We utilize this causal information in building a
causally consistent generative model. The (partial) causal graph is given utilizing domain knowledge
in these two contexts.

We performed all our experiments on a server with 8 NVidia GeForce RTX GPUs, 48 vCPU cores,
and 252 GB of memory. All our code was implemented in python. As the EEDI dataset has
missing data-entries, we utilize the partial VAE techniques specified in the work of Ma et al. (2019)
in our causal consistent model to handle such heterogeneous observations. Our code is released as
part of the supplementary material.

B.2 PRIVACY BUDGET (ε)

For training our differentially private models, we utilize opacus v0.10.0 library1 that supports
the DP-SGD training approach proposed by Abadi et al. (2016) of clipping the gradients and adding
noise while training. We ensure that the training parameters for training both causal and non-causal
models are fixed. These are described in Appendix G. For all our experiments, we perform a grid
search over the space of clipping norm C and noise multiplier σ. Once training is done, we calculate
the privacy budget after training using the Renyi differential privacy accountant provided as part of
the opacus package. The reported value of ε for both causal and non-causal models is the same
(and can be found in Table 2).

B.3 MEMBERSHIP INFERENCE ATTACK

Prior solutions for private generative models often use the value of ε as the sole measure for
privacy Zhang et al. (2017); Jordon et al. (2018); Zhang et al. (2020b). In addition to computing ε,
we go a step further and use a membership inference (MI) attack specific to generative models to
empirically evaluate if the models we train leak information Stadler et al. (2020). In this attack, the
adversary has access to (a) synthetic data sampled from a generative model trained with a particular
record in the training data (line 11), and (b) synthetic data sampled from a generative model trained
without the same record in the training data (line 5). The objective of the adversary (refer Algorithm 1)
is to use this synthetic data (from both cases, as in lines 7, 13) and learn a classifier to determine
if a particular record was used during training or not. Note that the notation S ∼ fs implies that
a dataset S of size s is sampled from the generative model. The various parameters associated

1https://github.com/pytorch/opacus
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Algorithm 1 MI Attack Stadler et al. (2020)
1: Input: Training dataset D, generative model training mechanism GM(.)
2: for i = 1 · · ·nT do
3: Choose random target t from D
4: for j = 1 · · ·n do
5: Train model fout = GM(D − {t})
6: for k = 1 · · ·ns do
7: Sout ∼ fs

out

8: Dtest = Dtest ∪ Sout

9: ltest = ltest ∪ {0}
10: end for
11: Train model fin = GM(D)
12: for k = 1 · · ·ns do
13: Sin ∼ fs

in

14: Dtest = Dtest ∪ Sin

15: ltest = ltest ∪ {1}
16: end for
17: end for
18: end for
19: Train discriminative classifier using Dtest, ltest

with this approach include (a) nT : the number of candidate targets considered, (b) n: the number
of times a particular generative model is trained, (c) t: the size of the training data, (d) ns: the
number of samples obtained from the trained generative model, and (e) s: the size of the sample
obtained from the trained generative model. Observe that the final data obtained for the attack is of
the order nT × n× s, and the number of unique generative models trained for this approach is equal
to n× nT × 2.

Once the adversary’s training dataDtest is obtained, the adversary can use several feature extractors to
extract more information from the entries inDtest. As in the original work, we utilize a Naive feature
extractor which extracts summary statistics, a Histogram feature extractor that contains marginal
frequency counts of each attribute, a Correlations feature extractor that encodes pairwise
attribute correlations, and an Ensemble feature extractor that encompasses the aforementioned
extractors collectively. As part of our evaluation, we set nT = 5, n = 5, t = |D| for each dataset D,
ns = 100, and s = 100.

B.4 UTILITY METRICS

Utility is preserved if the synthetic data performs equally well as the original sensitive data for any
given task using any classifier. To measure the utility change with our proposed approach, we perform
the following experiment: if a dataset has k attributes, we utilize k − 1 attributes to predict the
kth attribute. We randomly choose 20 different attributes to be predicted. Furthermore, we train 5
different classifiers for this task, and compare the predictive capabilities of these classifiers when
trained on (a) the original sensitive dataset, and (b) the synthetically generated private dataset. The 5
classifiers are: (a) linear SVC (or kernel), (b) svc, (c) logistic regression, (d) rf (or random
forest), (e) knn.

Additionally, we draw pairplots using the features from the original and the synthetic dataset to
compare their similarity visually. These pairplots are obtained by choosing 10 random attributes (out
of the k available attributes).
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(c) Non Causal

Figure 3: True SCG: Observe that both causal and non-causal models trained with DP reduce the adversary’s
advantage. Causal models provide more advantage degradation on average.

C EVALUATING MI RESILIENCE

Thus far, our discussion has focused om how (perfect) causal information can be used to theoretically
minimize the privacy budget. We design our evaluation with the goal to answer the following
questions:

1. What is the effect of causality on MI attack accuracy when both complete and only partial causal
information is available?

2. What is the effect on MI attack accuracy when a causally consitent VAE is trained both with and
without differential privacy (DP)?

We summarize our key results below:

1. Knowledge of a complete causal graph with differential privacy consistently reduces the adver-
sary’s advantage across different feature extractors and classifiers i.e., provides better privacy
guarantees (§ C.1.1).

2. Even partial causal information reduces the advantage of the adversary when the model is trained
without DP and in majority cases with DP as well. As a surprising result, we observe the advantage
to slightly increase for specific feature extractors-dataset combination for a model trained with
causality and DP (§ C.1.2).

C.1 MI ATTACK EVALUATION

We train 2 generative models: one that encodes information from a SCG and one that does not.
For each of these models, we train them with and without differential privacy and thus have 4
models in total for each dataset. For all our datasets, we evaluate these models against the MI
adversary (§ B.3), and plot the change in the adversary’s advantage which is the difference in the
attack accuracy when a method (differential privacy/causal consistency) is not used in comparison
to when it is used. A positive value means that corresponding method (i.e., causality or differential
privacy or both together) is effective in defending against the MI attack in that particular type of
model; this consequently reduces the attacker’s advantage. Note that as part of the MI attack, we are
unable to utilize the Correlation and Ensemble feature extractors for the EEDI dataset due to
computational constraints in our server.

C.1.1 WITH COMPLETE CAUSAL GRAPH

We conduct a toy experiment with synthetic data where the complete (true) causal graph is known
apriori. The data is generated based on the SCG defined in Appendix H. The results are presented
in Figure 3. Observe that in both the causal and non-causal model, training with DP provides an
advantage against the MI adversary, though to varying degrees. We also observe that causal models
provide greater resilience on average in comparison to the non-causal model. It is also important to
note that the reported value of ε for the causal model is the same as that of the associational model.
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(b) EEDI
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(c) Pain5000

Figure 4: Effect of DP, No Causality: We plot the advantage degradation when the adversary uses a non-DP
trained model and switches to its DP counterpart. Observe that DP enhances the defender’s resilience.

Yet, it provides better privacy guarantees. These results confirm our theoretical claim from § 2.1:
perfect causal information incorporated with DP provides boosted privacy, even against against real
world adversaries. Our results also demonstrate that ε cannot be used as a sole measure to gauge
the privacy of a generative model. The theoretical guarantees of ε-DP do not always translate to
resilience against membership attacks in practice.

C.1.2 WITH PARTIAL CAUSAL GRAPH

Many real-world datasets do not come with their associated SCGs. Learning these graphs is also
a computationally expensive process. To this end, we utilize information from domain experts to
partially construct a causal graph. Recall that our theoretical insight implicitly assumes that the
information contained by the causal graph is holisitc and accurate. Our evaluation in this subsection
verifies if the theory holds when the assumptions are violated. By partial, we mean that nodes for
several variables are clubbed together to reduce the overall size of the SCG. Increasing the size of the
SCG increases complexity associated with training models; resolving these issues is orthogonal to
our work. Note that due to space constraints, we only report results for 2 out of the 3 datasets we
evaluate. The trends from Pain1000 are similar to that of Pain5000 and are omitted for brevity.
These results can be found in Appendix J.

1. Effect of DP. Figure 4 plots the influence of differential private training on the MI adversary. In
particular, we plot how the adversary’s advantage changes when the defender switches from a model
trained without DP to one that is trained with DP. A positive value indicates that DP model is more
prohibitive to the adversary. We observe that the adversary’s advantage is reduced to varying degrees
across both datasets. This suggests that DP training is a reliable defense against adversary’s of this
nature Mukherjee et al. (2019); Bhowmick et al. (2018), despite having a higher range of ε values (as
shown in Table 2). The detailed MI accuracy numbers with precision and recall are in Appendix K.

2. Effect of only Causality. Figure 5 shows the MI adversary’s advantage when the model incorpo-
rates causal information in the absence of any DP. Observe that across both datasets, the adversary’s
advantage degrades (i.e., has values above zero). While this effect is moderate in the EEDI dataset
(Figure 5b), this effect is more pronounced in the Pain5000 dataset (Figure 5c). This suggests
that standalone causal information provides some privacy guarantees. We conjecture that the MI
adversary uses the spurious correlation among the attributes to perform the attack. Causal learning
algorithms by design eliminate any spurious correlation present in the dataset and hence, a causally
consistent VAE is also able to reduce the MI adversary’s advantage.

3. Effect of Causality with DP. Figure 6 shows the results for models trained using partial causal
information with DP and we observe some interesting findings. Similar to the results with complete
causal information, we observe that the combination of causality with DP is indeed effective in
reducing the MI adversary’s advantage for majority of the feature extractors and classifiers (shown
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(c) Pain5000

Figure 5: Partial Causal Information & No DP: We plot the advantage degradation when the adversary uses
a non-causal model and switches to its causal counterpart. Observe that even in the absence of DP, causal
consistency by itself provides resilience against our MI adversary.
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Figure 6: Partial Causal Information & DP: We plot the advantage degradation when the adversary uses a
non-causal model and switches to its causal counterpart. Observe that in the presence of DP & causal consistency,
the adversary’s advantage is predominantly reduced. However, there are some cases where the advantage
improves by using a causally consistent DP model.

in Figure 6c and Figure 6b (Hist)). However, as an exception, we see that their conjunction does
increase the attacker’s advantage for certain feature extractors when used with specific classifier (such
as svc or svc kernel using Naive features in Figure 6b). Thus, in this setting, the behaviour is
not well explained. We conjecture two reasons for this:

1. The membership inference adversary may exploit spurious correlations between different attributes
in a record, and different records. The partial causal information provided does not entirely
eliminate these correlations.

2. The information contained in the graph is counteracted by DP training.

D FUTURE WORK

Through our work, we identify several key questions that are to be analyzed in greater detail.

1. Our approach of incorporating causal information into the generative process has assumed that the
SCG is provided. Future work is required to automate the SCG generation process from observed
data and directly incorporating it in the VAE training process.

14



2. In our work, we show that in some scenarios, partial causal information can provide privacy
amplification. However, for specific dataset and feature extractor combination, causal information
increases attack efficiency used in addition to DP guarantees. A more detailed analysis is required
to understand the interplay between partial causal information and DP training.

3. We also wish to understand the influence of incorrect causal information on the efficacy of MI.

E RELATED WORK

Private Data Generation: The primary issue associated with synthetic data generation in a private
manner involves dealing with data scale and dimensionality. Solutions involve using Bayesian
networks to add calibrated noise to the latent representations (Zhang et al., 2017; Jälkö et al.,
2019), or smarter mechanisms to determine correlations (Zhang et al., 2020b). Utilizing synthetic
data generated by generative adversarial networks (GANs) for various problem domains has been
extensively studied, but only few solutions provide formal guarantees of privacy (Jordon et al., 2018;
Wu et al., 2019; Harder et al., 2020; Torkzadehmahani et al., 2019; Ma et al., 2020b; Tantipongpipat
et al., 2019; Xin et al., 2020; Long et al., 2019; Liu et al., 2019). Across the spectrum, very limited
techniques are evaluated against adversaries (Mukherjee et al., 2019).

Membership Inference: Membership Inference (MI) is the process associated with determining
whether a particular sample was used in the training of an ML model. This is a more specific form of
model inversion (Fredrikson et al., 2014), and was made popular by the work of Shokri et al. (2017).
Yeom et al. (2018) draw the connections to MI and overfitting, and argue that differentially private
training be a candidate solution. However, most work focuses on the discriminative setting. More
recently, several works propose MI attacks against generative models (Stadler et al., 2020; Hayes
et al., 2019; Chen et al., 2020; Hilprecht et al., 2019) but offer a limited explanation as to why they
are possible.
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F PROOF OF THEOREM 1

Notation: A mechanism H takes in as input a dataset D and outputs a parameterized model fθ,
where θ are the parameters of the model. The model (and its parameters) belongs to a hypothesis
space H. The dataset comprises of samples, where each sample x = (x1, · · · , xk) comprise of k
features. To learn the model, we utilize the empirical risk mechanism (ERM), and a loss function L.
The subscript of the loss function denotes what the loss is calculated over. For example Lx denotes
the loss being calculated over sample x. Similarly, LD denotes the average loss calculated over all
samples in the dataset i.e. LD = 1

|D|
∑

x∈D Lx. Additionally, Lx(fθ) = l(fθ(x), f
∗(x)) where f∗

is the oracle (responsible for generating ground truth), and l(., .) can be any loss function (such as the
cross entropy loss or reconstruction loss for a generative model).

Data Generating Process (DGP): DGP < f∗, η > is obtained as follows: f∗ =
limn→∞ argminLD(fθ). Essentially f? can be thought of as the infinite data limit of the ERM
learner and can be viewed as the ground truth. In a causal setting, the DGP for all variables/features
x is defined as f∗(x) = (f∗1 (Pa(x1)) + ηi, · · · , f∗n(Pa(xn)) + ηn) where ηi are mutually, indepen-
dently chosen noise values and Pa(xi) are the parents of xi in the SCG.

Distinction between Causal and Associational Worlds: For each feature xi, we call Pa(xi) as the
causal features, andX\{xi, Pa(xi)} as the associational features for predicting xi. Correspondingly,
the model using only Pa(xi) for each feature xi is known as the causal model, and the model using
all features X (including associational features) is known as the associational model. We denote the
causal model learnt by ERM with loss L as fθc , and the associational model learnt by ERM using
the same loss L as fθa . Note that the hypothesis class for the models is different: fθc ∈ HC and
fθa ∈ HA, whereHC ⊆ HA.

Like fθc , the true DGP function uses only the causal features. Assuming that the true function f∗
belongs in the hypothesis classHC , we write, f∗ = lim|D|→∞ argminf∈HC LD(f).
Adversary. Given a dataset D and a model fθ, the role of an adversary is to create a neighboring
dataset D′ by adding a new point x′. We assume that the adversary does so by choosing a point x′
where the loss of fθ is maximized. Thus, the difference of the empirical loss on D′ compared to D
will be high, which we expect to lead to high susceptibility to membership inference attacks.

Definition: Loss-maximizing (LM) Adversary: Given a model fθ, dataset D, and a loss function
L, an LM adversary chooses a point x′ (to be added to D to obtain D′) as argmaxx Lx(fθ). Note
that Lx(fθ) = Lx(fθ(x))

Theorem 1. Given a dataset D of size n, and a strongly convex and Lipschitz continuous
loss function L, assume we train two models in a differentially private manner: a causal
(generative) model fθc , and an associational (generative) model fθa , such that they minimize
L on D. Assume that the class of hypothesesH is expressive enough such that the true causal
function lies inH.
1. Infinite sample case. As n → ∞, the privacy budget of the causal model is lower than

that of the associational model i.e., εc ≤ εa.
2. Finite sample case. For finite n, assuming certain conditions on the associational models

learnt, the privacy budget of the causal model is lower than that of the associational model
i.e., εc ≤ εa.

The main steps of our proof are as follows:

1. We show that the maximum loss of a causal model is lower than or equal to maximum loss of the
corresponding associational model.

2. Using strong convexity and Lipschitz continuity of the loss function, we show how the difference
in loss corresponds to the sensitivity of the learning function.

3. Finally, the privacy budget ε is a monotonic function of the sensitivity.

We show claim 1 separately for n→∞ (A.1) and finite n (A.2) below. Then we prove claim 2 in
A.3. The claim 3 follows from differential privacy literature Dwork et al. (2014).

16



F.1 PROOF OF CLAIM 1 (n→∞)

As |D| = n→∞, the proof argument is that the causal model becomes the same as the true DGP
f∗.

P1. Given any variable xt, the causal model learns a function based only on its parents, Pa(xt). The
adversary for causal model chooses points from the DGP < f∗, η >2 s.t.,

x′ = argmax
x
Lx(fθc(x)) s.t. ∀i xi = f∗i (Pa(xi)) + ηi (1)

where fθc = argminf∈HC LD(f). Assuming thatHC is expressive enough such that f∗ ∈ HC , as
n = |D| → ∞, we can write,

lim
|D|→∞

fθc = lim
|D|→∞

arg max
f∈HC

LD(f) = f∗

Therefore, the causal model is equivalent to the true DGP’s function. For any target xi to be predicted,
maximum error on any point is ηi for the `1 loss, and a function of ηi for other losses. Intuitively, the
adversary is constrained to choose points at a maximum ηi distance away from the causal model.

But for associational models, we have,

x′′ = argmax
x
Lx(fθa(x)) s.t. ∀i xi = f∗i (Pa(xi)) + ηi (2)

As n = |D| → ∞, fθa 6= f∗. Thus, the adversary is less constrained and can generate points for a
target xi that are generated from a different function than the associational model. For any point, the
difference in the associational model’s prediction and the true value is |fθa(x))− f∗(Pa(xi))|+ ηi,
which is equivalent to the loss under `1. For a general loss function, the loss is a function of
|fθa(x)− f∗(Pa(xi))|+ ηi. Therefore, we obtain,

∀i ηi ≤ |fθa(x)− f∗(Pa(xi))|+ ηi ⇒ max
x
Lx(fθc(x)) ≤ max

x
Lx(fθa(x)) (3)

for all losses that are increasing functions of the difference between the predicted and actual value.

F.2 PROOF OF CLAIM 1 (FINITE n)

When n is finite, the proof argument remains the same but we need an additional assumption on the
associational model fθa learnt from D. From learning theory Shalev-Shwartz & Ben-David (2014),
we know that the loss of fθc will converge to that of f∗, while loss of fθa will converge to loss of
f∞θa 6= f∗. Thus, with high probability, fθc will have a lower loss w.r.t. f∗ than fθa and a similar
argument follows as for the infinite-data case. However, since this convergence is probabilistic and
depends on the size of n, it is possible to obtain a fθc that has a higher loss w.r.t. f∗ compared to fθa .

Therefore, rather than assuming convergence of fθc to f∗, we instead rely on the property that the
true DGP function f∗ does not depend on the associational features xa. As a result, even if the loss
of the associational model is lower than the causal model on a particular point x = xc ∪ xa3, we
can change the value of xa to obtain a higher loss for the associational model (without changing the
loss of the causal model). This requires that the associational model have a non-trivial contribution
from the associational (non-causal) features, sufficient to change the loss. We state the following
assumption.

Assumption 1: If fθc is the causal model and fθa is the associational model, then we assume that the
associational model has non-trivial contribution from the associational features. Specifically, denote
xc as the causal features and xa as the associational features, such that x = xc ∪ xa. We define any
two new points: x′ = x′c ∪ xa and x′′ = x′′c ∪ x′′a . Let us first assume a fixed value of xa. The LHS
(below) denotes the max difference in loss between fθc and fθa (i.e., change in loss between causal
and associational models over the same causal features). The RHS (below) denotes difference in loss
of fθa between xa and another value x∗a, keeping xc constant (i.e., effect due to the associational
features).

2One should think of the DGP = < f∗, η > as the oracle that generates labels.
3Note that xa and xc each represent a set of features, and not a single feature.
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The inequality below can be interpreted as follows: if adversary 1 aims to find the x′c such that
difference in loss between associational and causal features is highest for a given xa, then there can
always be another adversary 2 who can obtain a bigger difference in loss by changing the associational
features (from the same xa to x′′a).

∃xa max
x′c
{Lx′(fθc(x

′
c ∪ xa))− Lx′(fθa(x

′
c ∪ xa))}

≤ min
x′′c

max
x′′a
Lx′′(fθa(x

′′
c ∪ x′′a))− Lx′′c ∪xa(fθa(x

′′
c ∪ xa))

(4)

Intuition: Imagine that fθc is trained initially, and then associational features are introduced to train
fθa . fθa can obtain a lower loss than fθc by using the associational features xa. In doing so, it might
even change the model parameters related to xc. Assumption 1 says that change in xc’s parameters is
small compared to the importance of the xa’s parameters in fθa . For example, consider a f∗, fθc , fθa
to predict the value of xt such that xc = {x1} and xa = {x2}, and consider `1 loss.

f∗ = x1; fθc = 2x1; fθa = 1.9x1 + φ(x2)

where xt = f∗(x) + η and η ∈ [−0.5, 0.5]. Note that without φ(x2), the loss of the associational
model is lower than the loss of causal model on any point. However, if xa = x2 ∈ R, then we can
always set |x2| to an extreme value such that φ(x2) overturns the reduction in loss for the associational
model, without invoking Assumption 1. When xa is bounded (e.g., x2 ∈ {0, 1}), then Assumption 1
states that the change in loss possible due to changing φ(x2) is higher than the loss difference (which
is 0.1 for `1 loss). IfH was the class of linear functions and we assume `1 loss with all features in the
same range(e.g., [0, 1]), then Assumption 1 implies that the coefficient of the associational features in
fθa is higher than the change in coefficient for the causal features from fθc to fθa .

Lemma 1: Assume an LM adversary and a strongly convex loss function L. Given a causal
fθc and an associational model fθa trained on dataset D using ERM. The LM adversary
selects two points: x′ and x′′. Then the worst-case loss obtained on the causal ERM model
Lx′(fθc) is lower than the worst-case loss obtained on the associational ERM modelLx′′(fθa)
i.e.,

Lx′(fθc) ≤ Lx′′(fθa)

which can be re-written as

max
x
Lx(fθc) ≤ max

x
Lx(fθa) (5)

Proof: Before we discuss the proof, let us establish a few preliminaries.

P2. Let us write fθa(x) = fθa(xc ∪ xa) as a combination of terms due to xc and xa, where xc
and xa are the causal features (parents) and non-causal features respectively i.e. xc ∪ xa = x, and
xc ∩ xa = φ. Let x′ = x′c ∪ x′a be the point chosen by the causal adversary.

We will show that the associational adversary can always choose a point x′′ = x′c ∪ x′′a such that loss
of the adversary is higher. We write, for any value xa4,

L(fθa(x′c ∪ x′′a)) = L(fθa(x′c ∪ x′′a))− L(fθa(x′c ∪ xa)) + L(fθa(x′c ∪ xa))
= (L(fθa(x′c ∪ x′′a))− L(fθa(x′c ∪ xa))) + (L(fθa(x′c ∪ xa))− L(fθc(x′c ∪ xa))) + L(fθc(x′c ∪ xa))

(6)

Rearranging terms, and since L(fθc(x′c ∪ x′a)) = L(fθc(x′c ∪ xa)) for any value of xa (causal model
does not depend on associational features),
L(fθa(x′c ∪ x′′a))− L(fθc(x′c ∪ x′a)) = (L(fθa(x′c ∪ x′′a))− L(fθa(x′c ∪ xa)))︸ ︷︷ ︸

Term 1

− (L(fθc(x′c ∪ xa))− L(fθa(x′c ∪ xa))︸ ︷︷ ︸
Term 2

)

(7)
4We omit the subscript for L for brevity. It can be implied from context.
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Now the first term is ≥ 0 since the adversary can select x′′a such that loss increases (or stays constant)
for fθa . Since the true function f∗ does not depend on xa, changing xa does not change the true
function’s value but will change the value of the associational model (and adversary can choose it
such that loss on the new point is higher). The second term can either be positive or negative. If it is
negative, then we are done. Then the LHS > 0.

If the second term is positive, then we need to show that the first term is higher in magnitude than the
second term. From assumption 1, let it be satisfied for some x◦a. We know that L(fθc(x′c ∪ x′a)) =
L(fθc(x′c ∪ x◦a)) since the causal model ignores the associational features.

L(fθc(x′c ∪ x◦a))− L(fθa(x′c ∪ x◦a)) ≤ max
xc

(L(fθc(xc ∪ x◦a))− L(fθa(xc ∪ x◦a)))

≤ min
xc

max
x∗a

(L(fθa(xc ∪ x∗a)− L(fθa(xc ∪ x◦a)) ≤ max
x∗a

(L(fθa(x′c ∪ x∗a)− L(fθa(x′c ∪ x◦a))
(8)

Now suppose adversary chooses a point such that x′′a = xmaxa where xmaxa is the arg max of the RHS
above. Then Equation 7 can be rewritten as,

L(fθa(x′c ∪ xmaxa ))− L(fθc(x′c ∪ x′a)) = (L(fθa(x′c ∪ xmaxa ))− L(fθa(x′c ∪ x◦a)))− (L(fθc(x′c ∪ x◦a))− L(fθa(x′c ∪ x◦a)))
> 0

(9)

where the last inequality is due to equation 8.

Thus, adversary can always select a different value of x = x′c ∪ xmaxa such that loss is higher than
the max loss in a causal model.

L(fθc(x′c ∪ x′a)) = max
x
Lx(fθc) ≤ L(fθa(x′c ∪ xmaxa )) ≤ max

x
Lx(fθa)

F.3 PROOF OF CLAIM 2

Main Theorem: Assume the existence of a dataset D of n samples. Further, assume a
neighboring dataset is defined by adding a data point to D. Let fθc and fθa be the causal
and associational models learnt using D, and fθ′c and fθ′a be the causal and associational
models learnt using neighboring datasets D′ and D′′ respectively. All models are obtained by
ERM on a Lipschitz continuous, strongly convex loss function L. Then, the sensitivity of
a causal learning function HC will be lower than that of its associational counterpart HA.
Mathematically speaking,

max
D,D′

||θc − θ′c|| ≤ max
D,D′

||θa − θ′a|| (10)

Proof: The proof uses strongly convex and Lipschitz properties of the loss function. Before we
discuss the proof, let us introduce some preliminaries.

P1. Assume the existence of a dataset D of size n. There are two generative models learnt, fθa
and fθc using this dataset. Similarly, assume there is a neighboring dataset D′ which is obtained by
adding one point x′. Then the corresponding ERM models learnt using D′ are fθ′a and fθ′c .

We now detail the steps of the proof.

S1. Assume L is strongly convex. Then by the optimality of ERM predictor on D and the definition
of strong convexity,

LD(fθ) ≤ LD(αfθ + (1− α)fθ′)

≤ αLD(fθ) + (1− α)LD(fθ′)−
λ

2
α(1− α)||θ − θ′||2

(11)

Rearranging terms, and as α→ 1,
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(1− α)LD(fθ) ≤ (1− α)LD(fθ′)−
λ

2
α(1− α)||θ − θ′||2

⇒ ||θ − θ′||2 ≤ 2

λ
(LD(fθ′)− LD(fθ))

(12)

S3. Further, we can write (LD(fθ′)− LD(fθ)) in terms of loss on x′.

LD′(fθ) =
n

n+ 1
LD(fθ) +

1

n+ 1
Lx′(fθ) (since D′ = D ∪ x′)

≤ n

n+ 1
LD(fθ′) +

1

n+ 1
Lx′(fθ) (from Equation 12)

≤ n

n+ 1

n+ 1

n
LD′(fθ′)−

n

n+ 1

1

n
Lx′(fθ′) +

1

n+ 1
Lx′(fθ) (since D = D′ − {x′})

⇒ LD′(fθ)− LD′(fθ′) ≤
1

n+ 1
(Lx′(fθ)− Lx′(fθ′))

(13)

S4. Combining the above two equations, we obtain,

||θ − θ′||2 ≤ 2

λ
(LD(fθ′)− LD(fθ)) ≤

2

λ(n+ 1)
(Lx′(fθ)− Lx′(fθ′)) (14)

S5. From Claim 1 above, we know that

max
x
Lx(fθc) ≤ max

x
Lx(fθa)

⇒ Lx′(fθc) ≤ Lx′′(fθa)
(15)

where x′ = argmaxx Lx(fθc) and x′′ is chosen such that x′ and x′′ differ only in the associational
features. Thus, Lx′(fθ′c) = Lx′′(fθ′c). Also becauseHC ⊆ HA, the training loss of the ERM model
for any D′′ defined using D and x′′ is higher for a causal model i.e.,

Lx′(fθ′c) = Lx′′(fθ′c) ≥ Lx′′(fθ′a) (16)

Therefore, we obtain,

Lx′(fθc)− Lx′(fθ′c) = max
x
Lx(fθc)− Lx′(fθ′c) ≤ Lx′′(fθa)− Lx′′(fθ′a) (17)

So we have now shown that the max loss difference on a point x′ for causal ERM models trained on
neighboring datasets is lower than the corresponding loss difference over x′′ for the associational
models.

S6. Now we use the Lipschitz property, to claim,

Lx′′(fθa)− Lx′′(fθ′a) ≤ ρ||θa − θ
′
a|| (18)

S7. Combining Equations 14 (substituting fθc ) and 18, and taking max on the RHS, we get,

max
D,D′

||θc − θ′c||2 ≤
2

λ(n+ 1)
max
D,D′

Lx′(fθc)− Lx′(fθ′c)

≤ 2

λ(n+ 1)
max
D,D′

Lx′(fθa)− Lx′(fθ′a)

≤ 2ρ

λ(n+ 1)
max
D,D′

||θa − θ′a||

(19)
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⇒ max
D,D′

||θc − θ′c||2 ≤
2ρ

λ(n+ 1)
max
D,D′

||θa − θ′a|| (20)

For n+ 1 > 2ρ
λ ,

max
D,D′

||θc − θ′c||2 ≤ max
D,D′

||θa − θ′a|| (21)

Now if maxD,D′ ||θc − θ′c|| ≥ 1, then the result follows by taking the square root over LHS. If not,
we need a sufficiently large n such that n+ 1 > 2ρ

λmaxD,D′ ||θc−θ′c||
, then we obtain,

max
D,D′

||θc − θ′c|| ≤ max
D,D′

||θa − θ′a|| (22)

Remark on Theorem 1. Theorem 1 depends on two key assumptions: 1) Assumption 1 that con-
strains associational model to have non-trivial contribution from associational (non-causal) features;
and 2) a sufficiently large n as shown above. When any of these assumptions is violated (e.g., a small-
n training dataset or an associational model that is negligibly dependent on the associational features),
then it is possible that the causal ERM model has higher privacy budget than the associational ERM
model.

G TRAINING DETAILS

G.1 MODELS

G.1.1 PAIN

X2

X1 Z

Encoder:
qφ(z, x1|x2) = qφ1

(z|x1, x2) · qφ2
(x1|x2)

Decoder:
pθ(x2, x1, z) = pθ1(x2|x1) · pθ2(x2|z) · pθ3(x1|z)

G.1.2 EEDI

X2

X1 Z

Encoder:
qφ(z, x1|x2) = qφ1

(z|x2)

Decoder:
pθ(x2, x1, z) = p(z) · p(x1) · pθ1(x2|z) · pθ2(x2|x1)

Note: All encoders and decoders used as part of our experiments comprised of simple feed-forward
architectures. In particular, these architectures have 3 layers. All embeddings generated are of size
10. We set the learning rate to be 0.001.
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G.2 TRAINING PARAMETERS

Causality Dataset Batch Size Epochs

× EEDI 200 1000
X EEDI 200 1000

× Pain1000 100 100
X Pain1000 100 100

× Pain5000 100 100
X Pain5000 100 100

× Synthetic 100 50
X Synthetic 100 50

Table 3: Training parameters for our experimental evaluation.

H STRUCTURED CAUSAL GRAPHS

SCG-1: SCG for the Pain dataset. X1 denotes the causes of a medical condition, and X2 denotes
the various conditions.

X2

X1 Z

SCG-2: SCG used by the EEDI. X2 denotes the answers to questions and X1 is the student meta
data such as the year group and school.

X2

X1 Z

I UTILITY EVALUATION

I.1 ACCURACY ON ORIGINAL DATA

The results are detailed in Table 4.

Dataset Non Causal Causal

kernel svc logistic rf knn kernel svc logistic rf knn

EEDI 86.93 91.24 88.53 93.8 88.22 87.38 91.46 88.95 93.44 87.92
Pain1000 92.75 94.42 91.56 94.19 88.78 92.69 94.03 91.81 94.28 89.5
Pain5000 95.37 96.53 97.47 93.03 92.14 95.48 96.5 97.39 92.74 92.19

Table 4: Baseline Accuracy calculated on the original (and not synthetic) data. Results presented in Table 1 are
based on these values.

I.2 PAIRPLOTS
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(a) Original (b) Causal + No DP (c) Causal + DP

Figure 7: Pain5000 Dataset

J RESULTS ON PAIN1000 DATASET

In Figure 8, we plot the advantage obtained by using only differential privacy (or DP), only causality
and causality with DP. Values greater than zero implies that there is a reduction in adversary’s
advantage. We observe that DP and causality individually helps mitigate the MI adversary. But the
combination of DP with causality, shown in Figure 8d helps the adversary with certain classifier and
feature extractor combination.
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(b) Effect of only DP
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(c) Effect of only Causality
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(d) Effect of causality with DP

Figure 8: Impact of DP: Observe that in the causal scenario, DP combined with causal models enables more
efficient attacks in some cases.

Takeaway: As discussed in § C.1.2, partial causal information induces strange artifacts. Additionally,
the limited amount of data contained in Pain1000 in comparison to Pain5000may also contribute
to some of these results.
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K MI RESULTS

PA denotes the ability of the classifier to correctly classify train samples. NA denotes the ability of
the classifier to correctly classify test samples. The Accuracy is a weighted combination of PA and
NA.

EEDI Non Causal: Refer Table 5.

DP Extractor Attack Model Accuracy PA NA

X Naive kernel 79.7 76.97 82.42
X Naive svc 79.7 76.97 82.42
X Naive random forest 98.18 96.97 99.39
X Naive knn 99.7 99.39 100.0

X Histogram kernel 58.79 100.0 17.58
X Histogram svc 57.58 60.61 54.55
X Histogram random forest 56.06 30.3 81.82
X Histogram knn 57.27 36.36 78.18

× Naive kernel 82.42 86.67 78.18
× Naive svc 82.42 86.67 78.18
× Naive random forest 100.0 100.0 100.0
× Naive knn 100.0 100.0 100.0

× Histogram kernel 100.0 100.0 100.0
× Histogram svc 100.0 100.0 100.0
× Histogram random forest 100.0 100.0 100.0
× Histogram knn 100.0 100.0 100.0

Table 5: MI Attack accuracy results for EEDI dataset when trained without causal information.

EEDI Causal: Refer Table 6

DP Extractor Attack Model Accuracy PA NA

X Naive kernel 62.73 69.09 56.36
X Naive svc 62.73 69.09 56.36
X Naive random forest 94.55 90.91 98.18
X Naive knn 95.45 92.12 98.79

X Histogram kernel 100.0 100.0 100.0
X Histogram svc 100.0 100.0 100.0
X Histogram random forest 100.0 100.0 100.0
X Histogram knn 100.0 100.0 100.0

× Naive kernel 89.09 78.18 100.0
× Naive svc 89.09 78.18 100.0
× Naive random forest 100.0 100.0 100.0
× Naive knn 100.0 100.0 100.0

× Histogram kernel 100.0 100.0 100.0
× Histogram svc 100.0 100.0 100.0
× Histogram random forest 100.0 100.0 100.0
× Histogram knn 100.0 100.0 100.0

Table 6: MI Attack accuracy results for EEDI dataset when trained with causal information

Pain 1000 Causal: Refer Table 7.

24



DP Extractor Attack Model Accuracy PA NA

X Naive kernel 47.33 100.0 0.0
X Naive svc 47.33 100.0 0.0
X Naive random forest 57.7 60.44 55.24
X Naive knn 55.94 60.44 51.9

X Histogram kernel 48.3 78.36 21.29
X Histogram svc 47.33 100.0 0.0
X Histogram random forest 57.82 100.0 19.91
X Histogram knn 59.7 81.82 39.82

X Correlated kernel 99.7 100.0 99.42
X Correlated svc 51.09 83.99 21.52
X Correlated random forest 97.39 95.52 99.08
X Correlated knn 41.52 42.64 40.51

X Ensemble kernel 61.76 20.49 98.85
X Ensemble svc 47.33 100.0 0.0
X Ensemble random forest 97.94 96.93 98.85
X Ensemble knn 81.09 86.3 76.41

× Naive kernel 47.33 100.0 0.0
× Naive svc 47.33 100.0 0.0
× Naive random forest 99.58 99.74 99.42
× Naive knn 96.76 96.16 95.4

× Histogram kernel 57.82 100.0 19.91
× Histogram svc 47.33 100.0 0.0
× Histogram random forest 57.82 100.0 19.91
× Histogram knn 59.7 81.82 39.82

× Correlated kernel 98.24 99.62 97.01
× Correlated svc 62.12 50.58 72.5
× Correlated random forest 100.0 100.0 100.0
× Correlated knn 60.61 60.95 60.3

× Ensemble kernel 61.7 72.23 51.78
× Ensemble svc 47.33 100.0 0.0
× Ensemble random forest 100.0 100.0 100.0
× Ensemble knn 82.12 83.99 80.44

Table 7: MI Attack accuracy results for Pain1000 dataset when trained without causal information

Pain 1000 Non Causal: Refer Table 8.
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DP Extractor Attack Model Accuracy PA NA

X Naive kernel 47.33 100.0 0.0
X Naive svc 47.33 100.0 0.0
X Naive random forest 79.82 82.33 77.56
X Naive knn 80.85 82.71 79.17

X Histogram kernel 96.36 96.41 96.32
X Histogram svc 47.33 100.0 0.0
X Histogram random forest 100.0 100.0 100.0
X Histogram knn 100.0 100.0 100.0

X Correlated kernel 100.0 100.0 100.0
X Correlated svc 94.12 92.83 95.28
X Correlated random forest 78.0 79.0 77.1
X Correlated knn 53.82 74.9 34.87

X Ensemble kernel 98.55 98.46 98.62
X Ensemble svc 47.33 100.0 0.0
X Ensemble random forest 94.85 93.98 95.63
X Ensemble knn 100.0 100.0 100.0

× Naive kernel 47.33 100.0 0.0
× Naive svc 47.33 100.0 0.0
× Naive random forest 99.7 100.0 99.42
× Naive knn 85.76 88.6 83.2

× Histogram kernel 86.79 90.14 83.77
× Histogram svc 47.33 100.0 0.0
× Histogram random forest 100.0 100.0 100.0
× Histogram knn 94.91 94.88 94.94

× Correlated kernel 100.0 100.0 100.0
× Correlated svc 100.0 100.0 100.0
× Correlated random forest 100.0 100.0 100.0
× Correlated knn 73.88 72.73 74.91

× Ensemble kernel 98.3 99.49 97.24
× Ensemble svc 47.33 100.0 0.0
× Ensemble random forest 100.0 100.0 100.0
× Ensemble knn 88.79 90.27 87.46

Table 8: MI Attack accuracy results for Pain1000 dataset when trained with causal information

Pain 5000 Causal: Refer Table 9.
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DP Extractor Attack Model Accuracy PA NA

X Naive kernel 47.33 100.0 0.0
X Naive svc 47.33 100.0 0.0
X Naive random forest 76.85 78.36 75.49
X Naive knn 76.79 78.36 75.37

X Histogram kernel 47.33 100.0 0.0
X Histogram svc 47.33 100.0 0.0
X Histogram random forest 57.82 100.0 19.91
X Histogram knn 58.7 81.82 39.82

X Correlated kernel 92.61 94.88 90.56
X Correlated svc 47.33 100.0 0.0
X Correlated random forest 100.0 100.0 100.0
X Correlated knn 36.48 45.07 28.77

X Ensemble kernel 47.33 100.0 0.0
X Ensemble svc 47.33 100.0 0.0
X Ensemble random forest 100.0 100.0 100.0
X Ensemble knn 74.85 81.56 68.81

× Naive kernel 47.33 100.0 0.0
× Naive svc 47.33 100.0 0.0
× Naive random forest 98.85 97.7 99.88
× Naive knn 96.12 93.98 98.04

× Histogram kernel 60.24 38.16 80.09
× Histogram svc 47.33 100.0 0.0
× Histogram random forest 57.82 100.0 19.91
× Histogram knn 59.7 81.82 39.82

× Correlated kernel 100.0 100.0 100.0
× Correlated svc 97.64 100.0 95.51
× Correlated random forest 100.0 100.0 100.0
× Correlated knn 100.0 100.0 100.0

× Ensemble kernel 62.18 46.73 76.06
× Ensemble svc 47.33 100.0 0.0
× Ensemble random forest 100.0 100.0 100.0
× Ensemble knn 100.0 100.0 100.0

Table 9: MI Attack accuracy results for Pain5000 dataset when trained without causal information

Pain 5000 Non Causal: Refer Table 10.
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DP Extractor Attack Model Accuracy PA NA

X Naive kernel 47.33 100.0 0.0
X Naive svc 64.61 60.18 68.58
X Naive random forest 99.94 99.87 100.0
X Naive knn 100.0 100.0 100.0

X Histogram kernel 100.0 100.0 100.0
X Histogram svc 65.03 91.55 41.2
X Histogram random forest 100.0 100.0 100.0
X Histogram knn 100.0 100.0 100.0

X Correlated kernel 100.0 100.0 100.0
X Correlated svc 100.0 100.0 100.0
X Correlated random forest 99.76 99.62 99.88
X Correlated knn 53.09 80.41 28.54

X Ensemble kernel 100.0 100.0 100.0
X Ensemble svc 48.85 100.0 2.88
X Ensemble random forest 100.0 100.0 100.0
X Ensemble knn 100.0 100.0 100.0

× Naive kernel 47.33 100.0 0.0
× Naive svc 47.33 100.0 0.0
× Naive random forest 100.0 100.0 100.0
× Naive knn 99.82 99.62 100.0

× Histogram kernel 100.0 100.0 100.0
× Histogram svc 47.33 100.0 0.0
× Histogram random forest 100.0 100.0 100.0
× Histogram knn 100.0 100.0 100.0

× Correlated kernel 100.0 100.0 100.0
× Correlated svc 100.0 100.0 100.0
× Correlated random forest 100.0 100.0 100.0
× Correlated knn 100.0 100.0 100.0

× Ensemble kernel 100.0 100.0 100.0
× Ensemble svc 47.33 100.0 0.0
× Ensemble random forest 100.0 100.0 100.0
× Ensemble knn 100.0 100.0 100.0

Table 10: MI Attack accuracy results for Pain5000 dataset when trained with causal information
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